Search Machine Learning Repository: @inproceedings{icml2014c1_nguyena14,
    Publisher = {JMLR Workshop and Conference Proceedings},
    Title = {Fast Allocation of Gaussian Process Experts},
    Url = {http://jmlr.org/proceedings/papers/v32/nguyena14.pdf},
    Abstract = {We propose a scalable nonparametric Bayesian regression model based on a mixture of Gaussian process (GP) experts and the inducing points formalism underpinning sparse GP approximations. Each expert is augmented with a set of inducing points, and the allocation of data points to experts is defined probabilistically based on their proximity to the experts. This allocation mechanism enables a fast variational inference procedure for learning of the inducing inputs and hyperparameters of the experts. When using $K$ experts, our method can run $K^2$ times faster and use $K^2$ times less memory than popular sparse methods such as the FITC approximation. Furthermore, it is easy to parallelize and handles non-stationarity straightforwardly. Our experiments show that on medium-sized datasets (of around $10^4$ training points) it trains up to 5 times faster than FITC while achieving comparable accuracy. On a large dataset of $10^5$ training points, our method significantly outperforms six competitive baselines while requiring only a few hours of training.},
    Author = {Trung Nguyen and Edwin Bonilla},
    Editor = {Tony Jebara and Eric P. Xing},
    Year = {2014},
    Booktitle = {Proceedings of the 31st International Conference on Machine Learning (ICML-14)},
    Pages = {145-153}
   }