Search Machine Learning Repository: @inproceedings{icml2014c1_ramdas14,
    Publisher = {JMLR Workshop and Conference Proceedings},
    Title = {Margins, Kernels and Non-linear Smoothed Perceptrons},
    Url = {},
    Abstract = {We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\rho$) in an RKHS and %use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel's (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of $\tfrac{\sqrt {\log n}}{\rho}$ given $n$ separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is $\tfrac1{\rho^2}$. When no such classifier exists, we prove a version of Gordan's separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in $\min\{\tfrac{\sqrt n}{|\rho|}, \tfrac{\sqrt n}{\epsilon}\}$ iterations with a perfect separator in the RKHS if the primal is feasible or a dual $\epsilon$-certificate of near-infeasibility.},
    Author = {Aaditya Ramdas and Javier Peña},
    Editor = {Tony Jebara and Eric P. Xing},
    Year = {2014},
    Booktitle = {Proceedings of the 31st International Conference on Machine Learning (ICML-14)},
    Pages = {244-252}