Deep Fisher Networks for Large-Scale Image Classification

Karen Simonyan Andrea Vedaldi Andrew Zisserman
Visual Geometry Group, University of Oxford
{karen,vedaldi,az}@robots.ox.ac.uk

Abstract
As massively parallel computations have become broadly available with modern GPUs, deep architectures trained on very large datasets have risen in popularity. Discriminatively trained convolutional neural networks, in particular, were recently shown to yield state-of-the-art performance in challenging image classification benchmarks such as ImageNet. However, elements of these architectures are similar to standard hand-crafted representations used in computer vision. In this paper, we explore the extent of this analogy, proposing a version of the state-of-the-art Fisher vector image encoding that can be stacked in multiple layers. This architecture significantly improves on standard Fisher vectors, and obtains competitive results with deep convolutional networks at a smaller computational learning cost. Our hybrid architecture allows us to assess how the performance of a conventional hand-crafted image classification pipeline changes with increased depth. We also show that convolutional networks and Fisher vector encodings are complementary in the sense that their combination further improves the accuracy.

1 Introduction
Discriminatively trained deep convolutional neural networks (CNN) [18] have recently achieved impressive state of the art results over a number of areas, including, in particular, the visual recognition of categories in the ImageNet Large-Scale Visual Recognition Challenge [4]. This success is built on many years of tuning and incorporating ideas into CNNs in order to improve their performance. Many of the key ideas in CNN have now been absorbed into features proposed in the computer vision literature – some have been discovered independently and others have been overtly borrowed. For example: the importance of whitening [11]; max pooling and sparse coding [26,33]; non-linearity and normalization [20]. Indeed, several standard features and pipelines in computer vision, such as SIFT [19] and a spatial pyramid on Bag of visual Words (BoW) [16] can be seen as corresponding to layers of a standard CNN. However, image classification pipelines used in the computer vision literature are still generally quite shallow: either a global feature vector is computed over an image, and used directly for classification; or, in a few cases, a two layer hierarchy is used, where the outputs of a number of classifiers form the global feature vector for the image (e.g. attributes and classemes [15,30]).

The question we address in this paper is whether it is possible to improve the performance of off-the-shelf computer vision features by organising them into a deeper architecture. To this end we make the following contributions: (i) we introduce a Fisher Vector Layer, which is a generalization of the standard FV to a layer architecture suitable for stacking; (ii) we demonstrate that by discriminatively training several such layers and stacking them into a Fisher Vector Network, an accuracy competitive with the deep CNN can be achieved, whilst staying in the realms of conventional SIFT and colour features and FV encodings; and (iii) we show that class posteriors, computed by the deep CNN and FV, are complementary and can be combined to significantly improve the accuracy.
The rest of the paper is organised as follows. After a discussion of the related work, we begin with a brief description of the conventional FV encoding \cite{philbin2007object} (Sect. 2). We then show how this representation can be modified to be used as a layer in a deeper architecture (Sect. 3) and how the latter can be discriminatively learnt to yield a deep Fisher network (Sect. 4). After discussing important details of the implementation (Sect. 5), we evaluate our architecture on the ImageNet image classification benchmark (Sect. 6).

Related work. There is a vast literature on large-scale image classification, which we briefly review here. One widely used approach is to extract local features such as SIFT \cite{lowe2004distinctive} densely from each image, aggregate and encode them as high-dimensional vectors, and feed the latter to a classifier, e.g. an SVM. There exists a large variety of different encodings that can be used for this purpose, including the BoW \cite{vedaldi2008vlfeat} encoding, sparse coding \cite{donoho2005sparse}, and the FV encoding \cite{philbin2007object}. Since FV was shown to outperform other encodings \cite{elfes2012fisher} and achieve very good performance on various image recognition benchmarks \cite{vedaldi2010beyond}, \cite{vedaldi2011vlfeat}, we use it as the basis of our framework. We note that other recently proposed encodings (e.g. \cite{wang2013efficient}) can be readily employed in the place of FV. Most encodings are designed to disregard the spatial location of features in order to be invariant to image transformations; in practice, however, retaining weak spatial information yields an improved classification performance. This can be incorporated by dividing the image into regions, encoding each of them individually, and stacking the result in a composite higher-dimensional code, known as a spatial pyramid \cite{vedaldi2011vlfeat}. The alternative, which does not increase the encoding dimensionality, is to augment the local features with their spatial coordinates \cite{vedaldi2011vlfeat}.

Another vast family of image classification techniques is based on Deep Neural Networks (DNN), which are inspired by the layered structure of the visual cortex in mammals \cite{hubel1962receptive}. DNNs can be trained greedily, in a layer-by-layer manner, as in Restricted Boltzmann Machines \cite{NELSON2003256} and (sparse) auto-encoders \cite{budhathakur2017deep} \cite{olah2017feature}, or by learning all layers simultaneously, which is relatively efficient if the layers are convolutional \cite{elliott2014functions}. In particular, the advent of massively-parallel GPUs has recently made it possible to train deep convolutional networks on a large scale with excellent performance \cite{krizhevsky2012imagenet} \cite{he2016deep}. It was also shown that techniques such as training and test data augmentation, as well as averaging the outputs of independently trained DNNs, can significantly improve the accuracy.

There have been attempts to bridge these two families, exploring the trade-offs between network depth and width, as well as the complexity of the layers. For instance, dense feature encoding using the bag of visual words was considered as a single layer of a deep network in \cite{vedaldi2011vlfeat} \cite{olah2017feature} \cite{kiros2014skip}. In particular, the advent of massively-parallel GPUs has recently made it possible to train deep convolutional networks on a large scale with excellent performance \cite{krizhevsky2012imagenet} \cite{he2016deep}. It was also shown that techniques such as training and test data augmentation, as well as averaging the outputs of independently trained DNNs, can significantly improve the accuracy.

2 Fisher vector encoding for image classification

The Fisher vector encoding ϕ of a set of features $\{x_p\}$ (e.g. densely computed SIFT features) is based on fitting a parametric generative model, e.g. the Gaussian Mixture Model (GMM), to the features, and then encoding the derivatives of the log-likelihood of the model with respect to its parameters \cite{philbin2007object}. In the particular case of GMMs with diagonal covariances, used here, this leads to the representation which captures the average first and second order differences between the features and each of the GMM centres \cite{philbin2007object}:

$$\Phi_k^{(1)} = \frac{1}{N} \sum_{p=1}^{N} \alpha_k(x_p) \left(\frac{x_p - \mu_k}{\sigma_k} \right), \quad \Phi_k^{(2)} = \frac{1}{N \sqrt{2\pi k}} \sum_{p=1}^{N} \alpha_k(x_p) \left(\frac{(x_p - \mu_k)^2}{\sigma_k^2} - 1 \right)$$

(1)

Here, $\{\pi_k, \mu_k, \sigma_k\}_k$ are the mixture weights, means, and diagonal covariances of the GMM, which is computed on the training set and used for the description of all images; $\alpha_k(x_p)$ is the soft assignment weight of the p-th feature x_p to the k-th Gaussian. An FV is obtained by stacking the differences: $\phi = [\Phi_k^{(1)}, \Phi_k^{(2)}, \ldots, \Phi_k^{(1)}, \Phi_k^{(2)}]$. The encoding describes how the distribution of features of a particular image differs from the distribution fitted to the features of all training images. To make the features amenable to the FV description based on the diagonal-covariance GMM, they are first decorrelated by PCA.

The FV dimensionality is $2Kd$, where K is the codebook size (the number of Gaussians in the GMM), and d is the dimensionality of the encoded feature vector. For instance, FV encoding of a SIFT feature ($d = 128$) using a small GMM codebook ($K = 256$) is $65.5K$-dimensional. This means that high-dimensional feature encodings can be quickly computed using small codebooks. Using the same codebook size, BoW and sparse coding are only K-dimensional and less discriminative, as demonstrated in \cite{philbin2007object}. From another point of view, given the desired encoding dimensionality,
Figure 1: Left: Fisher network (Sect. 4) with two Fisher layers. Right: conventional pipeline using a shallow Fisher vector encoding. As shown in Sect. 6, making the conventional pipeline slightly deeper by injecting a single Fisher layer substantially improves the classification accuracy.

these methods would require \(2d\)-times larger codebooks than needed for FV, which would lead to impractical computation times.

As can be seen from (1), the (unnormalised) FV encoding is additive with respect to image features, i.e. the encoding of an image is an average of the individual encodings of its features. Following (20), FV performance is further improved by passing it through Signed Square-Rooting (SSR) and \(L_2\) normalisation. Finally, the high-dimensional FV is usually coupled with a one-vs-rest linear SVM classifier, and together they form a conventional image classification pipeline (21) (see Fig. 1), which serves as a baseline for our classification framework.

3 Fisher layer

The conventional FV representation of an image (Sect. 2), effectively encodes each local feature (e.g. SIFT) into a high-dimensional representation, and then aggregates these encodings into a single vector by global sum-pooling over the whole image (followed by normalisation). This means that the representation describes the image in terms of the local patch features, and can not capture more complex image structures. Deep neural networks are able to model the feature hierarchies by passing an output of one feature computation layer as the input to the next one. We adopt a similar approach here, and devise a feed-forward feature encoding layer (which we term a Fisher layer), which is based on off-the-shelf Fisher vector encoding. The layers can then be stacked into a deep network, which we call a Fisher network.

The architecture of the \(l\)-th Fisher layer is depicted in Fig. 2. On the input, it receives \(d_l\)-dimensional features \((d_l \sim 10^3)\), densely computed on the regular image grid. The features are assumed to be decorrelated using PCA. The layer performs feed-forward feature transformation in three sub-layers. The first one computes semi-local FV encodings by pooling the input features not from the whole image, but from a dense set of semi-local regions. The resulting FVs form a new set of densely sampled features that are more discriminative than the input ones and less local, as they integrate information from larger image areas. The FV encoder (Sect. 2) uses a layer-specific GMM with \(K_l\) components, so the dimensionality of each FV is \(2K ld_l\), which, considering that FVs are computed densely, might be too large for practical applications. Therefore, we decrease FV dimensionality by projection onto \(h_l\)-dimensional subspace using a discriminatively trained linear projection \(W_l \in \mathcal{R}^{K_l \times 2K ld_l}\). In practice, this is carried out using an efficient variant of the FV encoder (Sect. 5). In the second sub-layer, the spatially adjacent features are stacked in a \(2 \times 2\) window, which produces \(4h_l\)-dimensional dense feature representation. Finally, the features are \(L_2\)-normalised and PCA-projected to \(d_{l+1}\)-dimensional subspace using the linear projection \(U_l \in \mathcal{R}^{d_{l+1} \times 4h_l}\), and passed as the input to the \((l+1)\)-th layer. Each sub-layer is explained in more detail below.
Figure 2: The architecture of a single Fisher layer. Top: the arrows illustrate the data flow through the layer; the dimensionality of densely computed features is shown next to the arrows. Bottom: spatial pooling (the blue squares) and stacking (the red square) in sub-layers 1 and 2.

Multi-scale Fisher vector pooling (sub-layer 1). The key idea behind the first sub-layer is to aggregate the FVs of individual features over a family of semi-local spatial neighbourhoods. These neighbourhoods are overlapping square regions of size \(q_l \times q_l \), sampled every \(\delta_l \) pixels (see Fig. 2); compared to the regions used in global or spatial pyramid pooling [20], these are smaller and sampled much more densely. As a result, instead of a single FV, describing the whole image, the image is represented by a large number of densely computed semi-local FVs, each of which describes a spatially adjacent set of local features, computed by the previous layer. Thus, the new feature representation can capture more complex image statistics with larger spatial support. We note that due to additivity, computing the FV of a spatial neighbourhood corresponds to the sum-pooling over the neighbourhood, a stage widely used in DNNs. However, unlike many DNN architectures, which use a single pooling window size per layer, we employ multiple pooling window sizes, so that a single layer can encode multi-scale statistics. In Sect. 6 we show that multi-scale pooling indeed brings an improvement, compared to a fixed pooling window size.

The high dimensionality of Fisher vectors, however, brings up the computational complexity issue, as storing and processing thousands of dense FVs per image (each of which is \(2K_l d_l \)-dimensional) is prohibitive at large scale. We tackle this problem by employing discriminative dimensionality reduction for high-dimensional FVs, which makes the layer learning procedure supervised. The dimensionality reduction is carried out using a linear projection \(W_l \) onto an \(h_l \)-dimensional subspace. As will be shown in Sect. 5, dense, compressed FVs can be computed very efficiently, without the need to compute the full-dimensional FVs first, and then project them down.

A similar approach (passing the output of a feature encoder to another encoder) has been previously employed by [1][8][32], but in their case they used bag-of-words or sparse coding representations. As noted in [8], such encodings require large codebooks to produce discriminative feature representations. This, in turn, makes these approaches hardly applicable to the datasets of ImageNet scale [4]. As explained in Sect. 2, FV encoders do not require large codebooks, and by employing supervised dimensionality reduction, we can preserve the discriminative ability of FV even after the projection onto a low-dimensional space, similarly to [10].

Spatial stacking (sub-layer 2). After the dimensionality-reduced FV pooling (Sect. 5), an image is represented as a spatially dense set of relatively low-dimensional discriminative features (\(h_l = 10^3 \) in our experiments). It should be noted that local sum-pooling, while making the representation invariant to small translations, is agnostic to the relative location of aggregated features. To capture the spatial structure within each feature's neighbourhood, we incorporate the stacking sub-layer, which concatenates the spatially adjacent features in a \(2 \times 2 \) window (Fig. 2). This step is similar to \(4 \times 4 \) stacking employed in SIFT.

Normalisation and PCA projection (sub-layer 3). After stacking, the features are \(L_2 \) normalised, which improves their invariance properties. This procedure is closely related to Local Contrast Normalisation, widely used in DNNs. Finally, before passing the features to the FV encoder of the next layer, PCA dimensionality reduction is carried out, which serves two purposes: (i) features are decorrelated so that they can be modelled using diagonal-covariance GMMs of the next layer,
(ii) dimensionality is reduced from $4h_l$ to d_{l+1} to keep the image representation compact and the computational complexity limited.

4 Fisher network

Our image classification pipeline, which we coin Fisher network (shown in Fig. 1) is constructed by stacking several (at least one) Fisher layers (Sect. 3) on top of dense features, such as SIFT or raw image patches. The penultimate layer, which computes a single-vector image representation, is the special case of the Fisher layer, where sum-pooling is only performed globally over the whole image. We call this layer the global Fisher layer, and it effectively computes a full-dimensional normalised Fisher vector encoding (the dimensionality reduction stage is omitted since the computed FV is directly used for classification). The final layer is an off-the-shelf ensemble of one-vs-rest binary linear SVMs. As can be seen, a Fisher network generalises the standard FV pipeline of [20], as the latter corresponds to the network with a single global Fisher layer.

Multi-layer image descriptor. Each subsequent Fisher layer is designed to capture more complex, higher-level image statistics, but the competitive performance of shallow FV-based frameworks [21] suggests that low-level SIFT features are already discriminative enough to distinguish between a number of image classes. To fully exploit the hierarchy of Fisher layers, we branch out a globally pooled, normalised FV from each of the Fisher layers, not just the last one. These image representations are then concatenated to produce a rich, multi-layer image descriptor. A similar approach has previously been applied to convolutional networks in [25].

4.1 Learning

The Fisher network is trained in a supervised manner, since each Fisher layer (apart from the global layer) depends on discriminative dimensionality reduction. The network is trained greedily, layer by layer. Here we discuss how the (non-global) Fisher layer can be efficiently trained in the large-scale scenario, and introduce two options for the projection learning objective.

Projection learning proxy. As explained in Sect. 3, we need to learn a discriminative projection W to significantly reduce the dimensionality of the densely-computed semi-local FVs. At the same time, the only annotation available for discriminative learning in our case is the class label of the whole image. We exploit this information by requiring that projected semi-local FVs are good predictors of the image class. Taking into account that (i) it may be unreasonable to require all local feature occurrences to predict the object class (the support of some features may not even cover the object), and (ii) there are too many features to use all of them in learning ($\sim 10^4$ semi-local FVs for each of the $\sim 10^6$ training images), we optimize the average class prediction of all the features in a layer, rather than the prediction of individual feature occurrences.

In particular, we construct a learning proxy by computing the average ψ of all unnormalised, unprojected semi-local FVs ϕ_s of an image, $\psi = \frac{1}{S} \sum_{s=1}^{S} \phi_s$, and defining the learning constraints on ψ using the image label. Considering that $W\psi = \frac{1}{S} \sum_{s=1}^{S} W\phi_s$, the projection W, learnt for ψ, is also applicable to individual semi-local FVs ϕ_s. The advantages of the proxy are that the image-level class annotation can now be utilised, and during projection learning we only need to store a single vector ψ per image. In the sequel, we define two options for the projection learning objective, which are then compared in Sect. 5.

Bi-convex max-margin projection learning. One approach to discriminative dimensionality reduction learning consists in finding the projection onto a subspace where the image classes are as linearly separable as possible [10 31]. This corresponds to the bilinear class scoring function: $v_c^T W \psi$, where W is the linear projection which we seek to optimise and v_c is the linear model (e.g. an SVM) of the class c in the projected space. The max-margin optimisation problem for W and the ensemble $\{v_c\}$ takes the following form:

$$\sum \sum \max \left[(v_{c'} - v_{c(i)})^T W \psi_i + 1, 0 \right] + \frac{\lambda}{2} \sum_{c} \|v_c\|^2 + \frac{\mu}{2} \|W\|^2_F,$$

where c_i is the ground-truth class of an image i, λ and μ are the regularisation constants. The learning objective is bi-convex in W and v_c, and a local optimum can be found by alternation between the convex problems for W and $\{v_c\}$, both of which can be solved in primal using a stochastic sub-gradient method [27]. We initialise the alternation by setting W to the PCA-whitening
matrix W_0. Once the optimisation has converged, the classifiers u_c are discarded, and we keep the projection W.

Projection onto the space of classifier scores. Another dimensionality reduction technique, which we consider in this work, is to train one-vs-rest SVM classifier $\{u_c\}_{C=1}^C$ on the full-dimensional FVs ψ, and then use the C-dimensional vector of SVM outputs as the compressed representation of ψ. This corresponds to setting the c-th row of the projection matrix W to the SVM model u_c. This approach is closely related to attribute-based representations and classessmes [15, 30], but in our case we do not use any additional data annotated with a different set of (attribute) classes to train the models; instead, the $C = 1000$ classifiers trained directly on the ILSVRC dataset are used. If a specific target dimensionality is required, PCA dimensionality reduction can be further applied to the classifier scores [10], but in our case we applied PCA after spatial stacking (Sect. 5).

The advantage of using SVM models for dimensionality reduction is, mostly, computational. As we will show in Sect. 6 both formulations exhibit a similar level of performance, but training C one-vs-rest classifiers is much faster than performing alternation between SVM learning and projection learning in 2. The reason is that one-vs-rest SVM training can be easily parallelised, while projection learning is significantly slower even when using a parallel gradient descent implementation.

5 Implementation details

Efficient computation of hard-assignment Fisher vectors. In the original FV encoding formulation [1], each feature is soft-assigned to all K Gaussians of the GMM by computing the assignment weights $\alpha_k(x_p)$ as the responsibilities of GMM component k for feature p: $\alpha_k(x_p) = \frac{\pi_k \mathcal{N}_k(x_p)}{\sum_{k'} \pi_{k'} \mathcal{N}_{k'}(x_p)}$, where $\mathcal{N}_k(x_p)$ is the likelihood of k-th Gaussian. To facilitate an efficient computation of a large number of dense FVs per image, we introduce and utilise a fast variant of FV (which we term hard-FV), which uses hard assignments of features to Gaussians, computed as

$$\alpha_k(x_p) = \begin{cases} 1 & \text{if } k = \arg\max_j \pi_j \mathcal{N}_j(x_p) \\ 0 & \text{otherwise} \end{cases}$$

(3)

We note that in spite of the hard assignment, hard-FV is drastically different from BoW, since hard-FV encodes the location of the encoded feature in the feature space with respect to the Gaussian cluster center.

Hard-FVs are inherently sparse: this allows for the fast computation of projected FVs $W_t\phi$. Indeed, it is easy to show that $W_t\phi = \sum_{k=1}^K \sum_{p \in \Omega_k} \left(W_{l1}^{(k,1)} \Phi^{(1)}_k + W_{l2}^{(k,2)} \Phi^{(2)}_k \right)$, where Ω_k is the set of input vectors hard-assigned to the GMM component k, and $W_{l1}^{(k,1)}, W_{l2}^{(k,2)}$ are the sub-matrices of W_l which correspond to the 1st and 2nd order differences $\Phi^{(1)}, \Phi^{(2)}$ between the feature x_p and the k-th GMM center [1]. This suggests the fast computation procedure: each d_l-dimensional input feature x_p is first hard-assigned to a Gaussian k based on (3). Then, the corresponding d_l-D differences $\Phi^{(1)}, \Phi^{(2)}(p)$ are computed and projected using small $h_l \times d_l$ sub-matrices $W_{l1}^{(k,1)}, W_{l2}^{(k,2)}$, which is fast. The algorithm avoids computing high-dimensional FVs, followed by the projection using a large matrix $W_l \in \mathcal{R}^{h_l \times 2Kl d_l}$, which is prohibitive since the number of dense FVs is high.

Implementation. We implemented our framework in Matlab with certain parts of the code in C++ MEX. The computation is carried out on CPU without the use of GPU (our pipeline would potentially benefit from a GPU implementation). Training the network on 1.2M images of ILSVRC-2010 [4] dataset takes less than a day on a 200-core cluster. Image classification time is $\sim 2s$ on a single core.

Feature extraction. Our feature extraction follows that of [21]. Images are rescaled so that the number of pixels is 100K. Dense RootSIFT [2] is computed on 24×24 patches over 5 scales (scale factor $\sqrt{2}$) with a 3 pixel step. We also employ SIFT augmentation with the patch spatial coordinates [24]. During training, high-dimensional FVs, computed by the 2nd Fisher layer, are compressed using product quantisation [23].

6 Evaluation

In this section, we evaluate the proposed Fisher network on the dataset, introduced for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2010 [4]. It contains images of 1000 cate-
The following configuration of Fisher layers was used: \(d_1 = 128, K_1 = 256, q_1 = 5, \delta_1 = 1, h_1 = 200 \) (number of classes), \(d_2 = 200, K_2 = 256 \). The baseline performance of a shallow FV encoding is 57.03\% and 78.9\% (top-1 and top-5 accuracy).

Table 1: Evaluation of dimensionality reduction, stacking, and normalisation sub-layers on a 200 class subset of ILSVRC-2010.

<table>
<thead>
<tr>
<th>Dim-ty reduction</th>
<th>Stacking</th>
<th>L2 norm-n</th>
<th>Top-1</th>
<th>Top-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier scores</td>
<td>✓</td>
<td>✓</td>
<td>59.69</td>
<td>80.29</td>
</tr>
<tr>
<td>Classifier scores</td>
<td>✓</td>
<td>✓</td>
<td>59.42</td>
<td>80.44</td>
</tr>
<tr>
<td>Bi-convex</td>
<td>✓</td>
<td>✓</td>
<td>60.22</td>
<td>80.93</td>
</tr>
<tr>
<td>Bi-convex</td>
<td>✓</td>
<td>✓</td>
<td>59.49</td>
<td>81.11</td>
</tr>
</tbody>
</table>

The following configuration of Fisher layers was used: \(d_1 = 128, K_1 = 256, q_1 = 5, \delta_1 = 1, h_1 = 200 \), \(d_2 = 200, K_2 = 256 \). Both Fisher layers used spatial coordinate augmentation. The baseline performance of a shallow FV encoding is 59.51\% and 80.50\% (top-1 and top-5 accuracy).

Table 2: Evaluation of multi-scale pooling and multi-layer image description on the subset of ILSVRC-2010.

<table>
<thead>
<tr>
<th>Pooling window size (q_1)</th>
<th>Pooling stride (\delta_1)</th>
<th>Multi-layer</th>
<th>Top-1</th>
<th>Top-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>🟢</td>
<td>61.56</td>
<td>82.21</td>
</tr>
<tr>
<td>{5, 7, 9, 11}</td>
<td>2</td>
<td>🟢</td>
<td>62.16</td>
<td>82.43</td>
</tr>
<tr>
<td>{5, 7, 9, 11}</td>
<td>2</td>
<td>✓</td>
<td>63.79</td>
<td>83.73</td>
</tr>
</tbody>
</table>

Now that we have evaluated various Fisher layer configurations on a subset of ILSVRC, we assess the performance of our framework on the full ILSVRC-2010 dataset. We use off-the-shelf SIFT and colour features [20] in the feature extraction layer, and demonstrate that significant improvements can be achieved by injecting a single Fisher layer into the conventional FV-based pipeline [23].

The following configuration of Fisher layers was used: \(d_1 = 80, K_1 = 512, q_1 = \{5, 7, 9, 11\} \), \(\delta_1 = 2, h_1 = 1000, d_2 = 256, K_2 = 256 \). On both Fisher layers, we used spatial coordinate augmentation of the input features. The first Fisher layer uses a large number of GMM components.
Table 3: **Performance on ILSVRC-2010 using dense SIFT and colour features.** We also specify the dimensionality of SIFT-based image representations.

<table>
<thead>
<tr>
<th>pipeline setting</th>
<th>SIFT only</th>
<th>SIFT & colour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dimension</td>
<td>top-1</td>
</tr>
<tr>
<td>1st Fisher layer</td>
<td>82K</td>
<td>46.52</td>
</tr>
<tr>
<td>2nd Fisher layer</td>
<td>131K</td>
<td>48.54</td>
</tr>
<tr>
<td>multi-layer (1st and 2nd Fisher layers)</td>
<td>213K</td>
<td>52.57</td>
</tr>
<tr>
<td>Sánchez et al. [23]</td>
<td>524K</td>
<td>N/A</td>
</tr>
</tbody>
</table>

k_l, since it was found to be beneficial for shallow FV encodings [23], used here as a baseline. The one-vs-rest SVM scores were Platt-calibrated on the validation set.

The results are shown in Table 3. First, we note that the globally pooled Fisher vector, branched out of the first Fisher layer (which effectively corresponds to the conventional FV encoding [23]), results in better accuracy than reported in [23], which validates our implementation. Using the 2nd Fisher layer on top of the 1st one leads to a significant performance improvement. Finally, stacking the FVs, produced by the 1st and 2nd Fisher layers, pushes the accuracy even further.

The state of the art on the ILSVRC-2010 dataset was obtained using an 8-layer convolutional network [14], i.e. twice as deep as the Fisher network considered here. Using training and test set augmentation (not employed here), they achieved 62.5% / 83.0% for top-1 / top-5 accuracy. Without test set augmentation, their result is 61% / 81.7% [14], while we get 59.5% / 79.2%. For reference, the baseline shallow FV accuracy is 55.4% / 76.4%. We conclude that injecting a single intermediate layer induces a significant performance boost (+4.1% top-1 accuracy), but deep CNNs are still somewhat better (+1.5% top-1 accuracy). These results are however quite encouraging since they were obtained by using off-the-shelf features and encodings, reconfigured to add a single intermediate layer. Notably, our model did not require an optimised GPU implementation, nor it was necessary to control over-fitting by techniques such as dropout [14] and training set augmentation.

Finally, we demonstrate that the Fisher network and deep CNN representations are complementary by combining the class posteriors obtained from CNN with those of a Fisher network. To this end, we re-implemented the deep CNN of [14] using their publicly available cuda-convnet toolbox. Our implementation performs slightly better, giving 62.91% / 83.19% (with test set augmentation). The multiplication of CNN and Fisher network posteriors leads to a significantly improved accuracy, **66.75% / 85.64%**. It should be noted that another way of improving the CNN accuracy, used in [14] on ImageNet-2012 dataset, consists in training several CNNs and averaging their posteriors. Further study of the complementarity of various deep and shallow representations is beyond the scope of this paper, and will be addressed in the future research.

7 Conclusion

We have shown that Fisher vectors, a standard image encoding method, are amenable to be stacked in multiple layers, in analogy to the state-of-the-art deep neural network architectures. Adding a single layer is in fact sufficient to significantly boost the performance of these shallow image encodings, bringing their performance closer to the state of the art in the large-scale classification scenario [14]. The fact that off-the-shelf image representations can be simply and successfully stacked indicates that deep schemes may extend well beyond neural networks.

References

