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Abstract

We consider the problem of selecting non-zero entries of a matrix A in order to
produce a sparse sketch of it, B, that minimizes }A´B}2. For large mˆn matri-
ces, such that n " m (for example, representing n observations over m attributes)
we give sampling distributions that exhibit four important properties. First, they
have closed forms computable from minimal information regarding A. Second,
they allow sketching of matrices whose non-zeros are presented to the algorithm
in arbitrary order as a stream, with Op1q computation per non-zero. Third, the
resulting sketch matrices are not only sparse, but their non-zero entries are highly
compressible. Lastly, and most importantly, under mild assumptions, our distri-
butions are provably competitive with the optimal offline distribution. Note that
the probabilities in the optimal offline distribution may be complex functions of
all the entries in the matrix. Therefore, regardless of computational complexity,
the optimal distribution might be impossible to compute in the streaming model.

1 Introduction

Given an m ˆ n matrix A, it is often desirable to find a sparser matrix B that is a good proxy
for A. Besides being a natural mathematical question, such sparsification has become a ubiqui-
tous preprocessing step in a number of data analysis operations including approximate eigenvector
computations [AM01, AHK06, AM07], semi-definite programming [AHK05, d’A08], and matrix
completion problems [CR09, CT10].

A fruitful measure for the approximation of A by B is the spectral norm of A ´ B, where for any
matrix C its spectral norm is defined as }C}2 “ max}x}2“1 }Cx}2. Randomization has been central
in the context of matrix approximations and the overall problem is typically cast as follows: given a
matrix A and a budget s, devise a distribution over matrices B such that the (expected) number of
non-zero entries in B is at most s and }A´B}2 is as small as possible.

Our work is motivated by big data matrices that are generated by measurement processes. Each
of the n matrix columns correspond to an observation of m attributes. Thus, we expect n " m.
Also we expect the total number of non-zero entries in A to exceed available memory. We assume
that the original data matrix A is accessed in the streaming model where we know only very basic
features of A a priori and the actual non-zero entries are presented to us one at a time in an arbitrary
order. The streaming model is especially important for tasks like recommendation engines where
user-item preferences become available one by one in an arbitrary order. But, it is also important in
cases when A exists in durable storage and random access of its entries is prohibitively expensive.

We establish that for such matrices the following approach gives provably near-optimal sparsifica-
tion. Assign to each element Aij of the matrix a weight that depends only on the elements in its
row qij “ |Aij |{}Apiq}1. Take ρ to be an (appropriate) distribution over the rows. Sample s i.i.d.
entries from A using the distribution pij “ ρiqij . Return B which is the mean of s matrices, each
containing a single non zero entry Aij{pij in the selected location pi, jq.

As we will see, this simple form of the probabilities pij falls out naturally from generic optimiza-
tion considerations. The fact that each entry is kept with probability proportional to its magnitude,
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besides being interesting on its own right, has a remarkably practical implication. Every non-zero
in the i-th row of B will take the form kijp}Apiq}1{sρiq where |kij | is the number times Aij was
sampled. Note that since we sample with replacement |kij | might, in rare occasions, be more than
1. The result is a matrix B which is representable in Opm logpnq` s logpn{sqq bits. This is because
there is no reason to store floating point matrix entry values. We use Opm logpnqq bits to store all
values }Apiq}1{sρi andOps logpn{sqq bits to store the non zero index offsets.1 Note that

ř

|kij | “ s
and that some of these offsets might be zero. In a simple experiment, we measured the average
number of bits per sample (total size of the sketch divided by the number of samples s). The results
were between 5 and 22 bits per sample depending on the matrix and s. It is important to note that
the number of bits per sample is usually less than log2pnq ` log2pmq which is the minimal number
of bit required to represent a pair pi, jq. Our experiments show a reduction of disc space by a factor
of between 2 and 5 relative to the compressed size of the file representing the sample matrix B in
the standard row-column-value list format.

Another insight of our work is that the distributions we propose are combinations of two L1-based
distributions. Which distribution is more dominant is determined by the sampling budget. When the
number of samples s is small, ρi is nearly linear in }Apiq}1 resulting in pij9|Aij |. However, as the
number of samples grows, ρi tends towards }Apiq}21 resulting in pij9|Aij | ¨ }Apiq}1, a distribution
we refer to as Row-L1 sampling. The dependence of the preferred distribution on the sample budget
is also borne out in experiments, with sampling based on appropriately mixed distributions being
consistently best. This highlights that the need to adapt the sampling distribution to the sample
budget is a genuine phenomenon.

2 Measure of Error and Related Work

We measure the difference between A and B with respect to the L2 (spectral) norm as it is highly
revealing in the context of data analysis. Let us define a linear trend in the data ofA as any tendency
of the rows to align with a particular unit vector x. To examine the presence of such a trend, we
need only multiply A with x: the ith coordinate of Ax is the projection of the ith row of A onto x.
Thus, }Ax}2 measures the strength of linear trend x in A, and }A}2 measures the strongest linear
trend in A. Thus, minimizing }A´B}2 minimizes the strength of the strongest linear trend of A not
captured by B. In contrast, measuring the difference using any entry-wise norm, e.g., the Frobenius
norm, can be completely uninformative. This is because the best strategy would be to always pick
the largest s matrix entries from A, a strategy that can easily be “fooled”. As a stark example, when
the matrix entries are Aij P t0, 1u, the quality of the approximation is completely independent of
which elements ofAwe keep. This is clearly bad; as long asA contains even a modicum of structure
certain approximations will be far better than others.

By using the spectral norm to measure error we get a natural and sophisticated target: to minimize
}A´B}2 is to makeE “ A´B a near-rotation, having only small variations in the amount by which
it stretches different vectors. This idea that the error matrix E should be isotropic, thus packing as
much Frobenius norm as possible for its L2 norm, motivated the first work on element-wise sampling
of matrices by Achlioptas and McSherry [AM07]. Concretely, to minimize }E}2 it is natural to aim
for a matrix E that is both zero-mean, i.e., an unbiased estimator ofA, and whose entries are formed
by sampling the entries of A (and, thus, of E) independently. In the work of [AM07], E is a matrix
of i.i.d. zero-mean random variables. The study of the spectral characteristics of such matrices
goes back all the way to Wigner’s famous semi-circle law [Wig58]. Specifically, to bound }E}2
in [AM07] a bound due to Alon Krivelevich and Vu [AKV02] was used, a refinement of a bound
by Juhász [Juh81] and Füredi and Komlós [FK81]. The most salient feature of that bound is that it
depends on the maximum entry-wise variance σ2 ofA´B, and therefore the distribution optimizing
the bound is the one in which the variance of all entries in E is the same. In turn, this means keeping
each entry of A independently with probability pij9A2

ij (up to a small wrinkle discussed below).

Several papers have since analyzed L2-sampling and variants [NDT09, NDT10, DZ11, GT09,
AM07]. An inherent difficulty of L2-sampling based strategies is the need for a special handling
of small entries. This is because when each item Aij is kept with probability pij9A2

ij , the result-
ing entry Bij in the sample matrix has magnitude |Aij{pij |91{|Aij |. Thus, if an extremely small

1It is harmless to assume any value in the matrix is kept using Oplogpnqq bits of precision. Otherwise,
truncating the trailing bits can be shown to be negligible.
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element Aij is accidentally picked, the largest entry of the sample matrix “blows up”. In [AM07]
this was addressed by sampling small entries with probability proportional to |Aij | rather than A2

ij .
In the work of Gittens and Tropp [GT09], small entries are not handled separately and the bound
derived depends on the ratio between the largest and the smallest non-zero magnitude.

Random matrix theory has witnessed dramatic progress in the last few years and [AW02, RV07,
Tro12a, Rec11] provide a good overview of the results. This progress motivated Drineas and Zouzias
in [DZ11] to revisit L2-sampling but now using concentration results for sums of random matrices
[Rec11], as we do here. (Note that this is somewhat different from the original setting of [AM07]
since now E is not one random matrix with independent entries, but a sum of many independent
matrices since the entries are chosen with replacement.) Their work improved upon all previous L2-
based sampling results and also upon the L1-sampling result of Arora, Hazan and Kale [AHK06],
discussed below, while admitting a remarkably compact proof. The issue of small entries was han-
dled in [DZ11] by deterministically discarding all sufficiently small entries, a strategy that gives the
strongest mathematical guarantee (but see the discussion regarding deterministic truncation in the
experimental section).

A completely different tack at the problem, avoiding random matrix theory altogether, was taken
by Arora et al. [AHK06]. Their approximation keeps the largest entries in A deterministically
(specifically all Aij ě ε{

?
n where the threshold ε needs be known a priori) and randomly rounds

the remaining smaller entries to signpAijqε{
?
n or 0. They exploit the simple fact }A ´ B} “

sup}x}“1,}y}“1 x
T pA´Bqy by noting that as a scalar quantity its concentration around its expecta-

tion can be established by standard Bernstein-Bennet type inequalities. A union bound then allows
them to prove that with high probability, xT pA´Bqy ď ε for every x and y. The result of [AHK06]
admits a relatively simple proof. However, it also requires a truncation that depends on the desired
approximation ε. Rather interestingly, this time the truncation amounts to keeping every entry larger
than some threshold.

3 Our Approach

Following the discussion in Section 2 and in line with previous works, we: (i) measure the quality
of B by }A´B}2, (ii) sample the entries of A independently, and (iii) require B to be an unbiased
estimator of A. We are therefore left with the task of determining a good probability distribution pij
from which to sample the entries of A in order to get B. As discussed in Section 2 prior art makes
heavy use of beautiful results in the theory of random matrices. Specifically, each work proposes a
specific sampling distribution and then uses results from random matrix theory to demonstrate that it
has good properties. In this work we reverse the approach, aiming for its logical conclusion. We start
from a cornerstone result in random matrix theory and work backwards to reverse-engineer near-
optimal distributions with respect to the notion of probabilistic deviations captured by the inequality.
The inequality we use it the Matrix-Bernstein inequality for sums of independent random matrices
(see e.g., [Tro12b], Theorem 1.6).

Theorem 3.1 (Matrix Bernstein inequality). Consider a finite sequence tXiu of i.i.d. randommˆn
matrices, where ErX1s “ 0 and }X1} ď R. Let σ2 “ max

 

}ErX1X
T
1 s}, }ErXT

1 X1s}
(

.

For some fixed s ě 1, let X “ pX1 ` ¨ ¨ ¨ `Xsq{s. For all ε ě 0,

Prr}X} ě εs ď pm` nq exp

ˆ

´
sε2

σ2 `Rε{3

˙

.

To get a feeling for our approach, fix any probability distribution p over the non-zero elements of
A. Let B be a random m ˆ n matrix with exactly one non-zero element, formed by sampling an
element Aij of A according to p and letting Bij “ Aij{pij . Observe that for every pi, jq, regardless
of the choice of p, we have ErBijs “ Aij , and thusB is always an unbiased estimator ofA. Clearly,
the same is true if we repeat this s times taking i.i.d. samples B1, . . . , Bs and let our matrix B
be their average. With this approach in mind, the goal is now to find a distribution p minimizing
}E} “ }A´pB1`¨ ¨ ¨`Bsq{s}. Writing sE “ pA´B1q` ¨ ¨ ¨` pA´Bsq we see that }sE} is the
operator norm of a sum of i.i.d. zero-mean random matrices Xi “ A ´ Bi, i.e., exactly the setting
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of Theorem 3.1. The relevant parameters are

σ2 “ max
 

}ErpA´B1qpA´B1q
T s}, }ErpA´B1q

T pA´B1qs}
(

(1)
R “ max }A´B1}2 over all possible realizations of B1 . (2)

Equations (1) and (2) mark the starting point of our work. Our goal is to find probability distributions
over the elements of A that optimize (1) and (2) simultaneously with respect to their functional form
in Theorem 3.1, thus yielding the strongest possible bound on }A´B}2. A conceptual contribution
of our work is the discovery that these distributions depend on the sample budget s, a fact also borne
out in experiments. The fact that minimizing the deviation metric of Theorem 3.1, i.e., σ2 ` Rε{3,
suffices to bring out this non-linearity can be viewed as testament to the theorem’s sharpness.

Theorem 3.1 is stated as a bound on the probability that the norm of the error matrix is greater than
some target error ε given the number of samples s. Nevertheless, in practice the target error ε is not
known in advance, but rather is the quantity to minimize given the matrix A, the number of samples
s, and the target confidence δ. Specifically, for any given distribution p on the elements of A, define

ε1ppq “ inf

"

ε : pm` nq exp

ˆ

´
sε2

σppq2 `Rppqε{3

˙

ď δ

*

. (3)

Our goal in the rest of the paper is to seek the distribution p˚ minimizing ε1. Our result is an easily
computable distribution p which comes within a factor of 3 of ε1pp˚q and, as a result, within a factor
of 9 in terms of sample complexity (in practice we expect this to be even smaller, as the factor of
3 comes from consolidating bounds for a number of different worst-case matrices). To put this in
perspective note that the definition of p˚ does not place any restriction either on the access model
for A while computing p˚, or on the amount of time needed to compute p˚. In other words, we are
competing against an oracle which in order to determine p˚ has all of A in its purview at once and
can spend an unbounded amount of computation to determine it.

In contrast, the only global information regarding A we will require are the ratios between the L1
norms of the rows of the matrix. Trivially, the exact L1 norms of the rows (and therefore their ratios)
can be computed in a single pass over the matrix, yielding a 2-pass algorithm. Moreover, standard
concentration of measure arguments imply that these ratios can be estimated very well by sampling
only a small number of columns. In our setting, it is in fact reasonable to expect that good estimates
of these ratios are available a priori. This is because different rows correspond to different attributes
and the ratios between the row norms reflect the ratios between the average absolute values of these
features. For example, if the matrix corresponds to text documents, knowing the ratios amounts
to knowing global word frequencies. Moreover these ratios do not need to be known exactly to
apply the algorithm, as even rough estimates of them give highly competitive results. Indeed, even
disregarding this issue completely and simply assuming that all ratios equal 1, yields an algorithm
that appears quite competitive in practice, as demonstrated by our experiments.

4 Data Matrices and Statement of Results

Throughout Apiq and Apjq will denote the i-th row and j-th column of A, respectively. Also, we
use the notation }A}1 “

ř

i,j |Aij | and }A}2F “
ř

i,j A
2
ij . Before we formally state our result we

introduce a definition that expresses the class of matrices for which our results hold.

Definition 4.1. An mˆ n matrix A is a Data matrix if:

1. mini }Apiq}1 ě maxj }A
pjq}1.

2. }A}21{}A}
2
2 ě 30m.

3. m ě 30.

Regarding Condition 1, recall that we think of A as being generated by a measurement process
of a fixed number of attributes (rows), each column corresponding to an observation. As a result,
columns have bounded L1 norm, i.e., }Apjq}1 ď constant. While this constant may depend on
the type of object and its dimensionality, it is independent of the number of objects. On the other
hand, }Apiq}1 grows linearly with the number of columns (objects). As a result, we can expect
Definition 4.1 to hold for all large enough data sets. Regarding Condition 2, it is easy to verify that
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unless the values of the entries of A exhibit an unbounded variance, }A}21{}A}
2
2 grows as Ωpnq and

Condition 2 follows from n " m. Condition 3 if trivial. Out of the three conditions the essential
one is Condition 1. The other two are merely technical and hold in all non-trivial cases where
Condition 1 applies.

To simplify the exposition of our algorithm, we describe it in a the non-streaming setting.

Algorithm 1 Construct a sketch B for a data matrix A
1: Input: Data matrix A P Rmˆn, sampling budget s, acceptable failure probability δ
2: Set ρÐ COMPUTEROWDISTRIBUTION(A, s, δ)
3: Sample s elements of A with replacement, each Aij having probability pij “ ρi ¨ |Aij |{}Apiq}1
4: For each sample xi, j, Aijy`, let entry pi, jq of B` be Aij{pij and zero otherwise.
5: Output: B “ 1

s

řs
`“1B`.

6: function COMPUTEROWDISTRIBUTION(A, s, δ)
7: Obtain z such that zi9}Apiq}1 for i P rms
8: Set αÐ

a

logppm` nq{δq{s and β Ð logppm` nq{δq{p3sq

9: Define ρipζq “
ˆ

αzi{2ζ `

b

pαzi{2ζq
2
` βzi{ζ

˙2

10: Find ζ1 such that
řm

i“1 ρipζ1q “ 1
11: return ρ such that ρi “ ρipζ1q for i P rms

About the complexity of Algorithm 1, steps 6–11 compute a distribution ρ over the rows. Assuming
step 7 can be implemented efficiently (or skipped altogether, see discussion in Section 1) the running
time of ComputeRowDistribution is independent of n. Finding ζ1 in step 10 can be done very
efficiently by binary search because the function

ř

i ρipζq is strictly decreasing in ζ. Conceptually,
we see that the probability assigned to each element Aij in Step 3 is simply the probability ρi of its
row times its intra-row weight |Aij |{}Apiq}1.

Note that to apply Algorithm 1 the entries of A must be sampled with replacement in the streaming
model. A simple way to achieve this using Opsq operations per matrix element and Opsq active
memory was presented in [DKM06]. In fact, though, it is possible to implement such sampling far
more efficiently.
Theorem 4.2. For any matrix A, steps 3-5 in Algorithm 1 can be accomplished using Oplogpsqq

active memory, Õpsq space, and Op1q operations per non zero element of A in the streaming model.

We are now able to state our main result.
Theorem 4.3. If A is a Data matrix (per Definition 4.1) and p is the probability distribution defined
in Algorithm 1, then ε1ppq ď 3 ε1pp

˚q, where p˚ is the minimizer of ε1.

The proof of Theorem 4.3 is outlined in Section 5. To understand the implications of Theorem 4.3
and to compare our result with previous ones we must first define several matrix metrics.

Stable rank: Denoted as sr and defined as }A}2F {}A}
2
2. This is a smooth analog for the algebraic

rank, always bounded by it from above, and resilient to small perturbations of the matrix. For data
matrices we expect it to be small (even constant) and to capture the “inherent dimensionality” of the
data.

Numeric density: Denoted as nd and defined as }A}21{}A}
2
F , this is a smooth analog of the number

of non-zero entries nnzpAq. For 0-1 matrices it equals nnzpAq, but when there is variance in the
magnitude of the entries it is smaller.

Numeric row density: Denoted as nrd and defined as
ř

i }Apiq}
2
1{}A}

2
F ď n. In practice, it is often

close to the average numeric density of a single row, a quantity typically much smaller than n.
Theorem 4.4. Let A be a data matrix meeting the conditions of Definition 4.1. Let B be the matrix
returned by Algorithm 1 for ε ą 0 and

s ě s0 “ Θpnrd ¨ sr {ε2 ¨ logpn{δq ` psr ¨nd {ε2 ¨ logpn{δqq1{2q .

Then }A´B} ď ε}A} with probability at least 1´ δ.
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The table below shows the corresponding number of samples in previous works for constant success
probability, in terms of the matrix metrics defined above. The fourth column presents the ratio of the
samples needed by previous results divided by the samples needed by our method. To simplify the
expressions, we present the ratio between our bound and [AHK06] only when the result of [AHK06]
gives superior bounds to [DZ11]. That is, we always compare our bound to the stronger of the two
bounds implied by these works.

Citation Method Number of samples needed Improvement ratio of Theorem 4.4

[AM07] L1, L2 sr ¨pn{ε2q ` n ¨ polylogpnq

[DZ11] L2 sr ¨pn{ε2q logpnq nrd {n` p
?

nd{nq ¨ pε{
a

sr logpnqq

[AHK06] L1 pnd ¨n{ε2q1{2
a

sr ¨ logpnq{n

This paper Bernstein
nrd ¨ sr {ε2 ¨ logpnq `
psr ¨nd {ε2 ¨ logpnqq1{2

Holding ε and the stable rank constant we readily see that our method requires roughly 1{
?
n the

samples needed by [AHK06]. In the comparison with [DZ11], the key parameter is the ratio nrd {n.
This quantity is typically much smaller than 1 for data matrices but independent of n. As a point
of reference for the assumptions, in the experimental Section 6 we provide the values of all relevant
matrix metrics for all the real data matrices we worked with, wherein the ratio nrd {n is typically
around 10´2. Considering this, one would expect that L2-sampling should experimentally fare
better than L1-sampling. As we will see, quite the opposite is true. A potential explanation for this
phenomenon is the relative looseness of the bound of [AHK06] for the performance of L1-sampling.

Due to space limitations, the complete proofs are deferred to [AKL13].

5 Proof outline

We start by iteratively replacing the objective functions (1) and (2) with increasingly simpler func-
tions. Each replacement will incur a (small) loss in accuracy but will bring us closer to a function
for which we can give a closed form solution. Recalling the definitions of α, β from Algorithm 1
and rewriting the requirement in (3) as a quadratic form in ε gives ε2 ´ εβR´ pασq2 ą 0. Our first
step is to observe that for any c, d ą 0, the equation ε2 ´ ε ¨ c ´ d “ 0 has one negative and one
positive solution and that the latter is at least pc `

?
dq{
?

2 and at most c `
?
d. Therefore, if we

define2 ε2 :“ ασ ` βR we see that 1{
?

2 ď ε1{ε2 ď 1.

Our next simplification encompasses Conditions 3, 2 of Definition 4.1. Let ε3 :“ ασ̃ ` βR̃ where

σ̃2 :“ max

#

max
i

ÿ

j

A2
ij{pij , max

j

ÿ

i

A2
ij{pij

+

R̃ :“ max
ij
|Aij |{pij .

Lemma 5.1. For every matrixA satisfying Conditions 3 and 2 of Definition 4.1, for every probability
distribution on the elements of A, |ε2{ε3 ´ 1| ď 1{30.

Lemma 5.1 is proved by showing that σ̃ « σ and R̃ « R. This allows us to optimize p with
respect to ε3 instead of ε2. In minimizing ε3 we see that there is freedom to use different rows to
optimize σ̃ and R̃. At a cost of a factor of 2, we will couple the two minimizations by minimizing
ε4 “ maxtε5, ε6u where

ε5 :“ max
i

»

–α

g

f

f

e

ÿ

j

A2
ij

pij
` βmax

j

|Aij |

pij

fi

fl , ε6 :“ max
j

»

–α

g

f

f

e

ÿ

i

A2
ij

pij
` βmax

i

|Aij |

pij

fi

fl . (4)

Note that the maximization of R̃ in ε5 (and ε6) is coupled with that of the σ̃-related term by con-
straining the optimization to consider only one row (column) at a time. Clearly, 1 ď ε3{ε4 ď 2.

2Here and in the following, to lighten notation, we will omit all arguments, i.e., p, σppq, Rppq, from the
objective functions εi we seeks to optimize, as they are readily understood from context.
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Next we focus on ε5, the first term in the maximization of ε4. The following key lemma establishes
that for all data matrices satisfying Condition 1 of Definition 4.1, by minimizing ε5 we also minimize
ε4 “ maxtε5, ε6u.

Lemma 5.2. For every matrix satisfying Condition 1 of Definition 4.1, argminp ε5 Ď argminp ε4.

At this point we can derive in closed form the probability distribution p minimizing ε5.

Lemma 5.3. The function ε5 is minimized by pij “ ρiqij where qij “ |Aij |{}Apiq}1. To define ρi

let zi9}Apiq}1 and define ρipζq “
ˆ

αzi{2ζ `

b

pαzi{2ζq
2
` βzi{ζ

˙2

. Let ζ1 ą 0 be the unique

solution to3 ř
i ρipζ1q “ 1. We set ρi :“ ρipζ1q.

To prove Theorem 4.3 we see that Lemmas 5.2 and 5.3 combined imply that there is an efficient
algorithm for minimizing ε4 for every matrix A satisfying Condition 1 of Definition 4.1. If A also
satisfies Conditions 3 and 2 of Definition 4.1, then it is possible to lower and upper bound the ratios
ε1{ε2,ε2{ε3 and ε3{ε4. Combined, these bounds guarantee a lower and upper bound for ε1{ε4.
In general, if c ď ε4{ε1 ď C we can conclude that ε1parg minpε4qq ď pC{cqminpε1q. Thus,
calculating the constants shows ε1parg minpε4qq ď 3 minpε1q yields Theorem 4.4.

6 Experiments

We experimented with 4 matrices with different characteristics, these are summarized in the table
below. See Section 4 for the definition of the different characteristics.

Measure m n nnzpAq }A}1 }A}F }A}2 sr nd nrd

Synthetic 1.0e+2 1.0e+4 5.0e+5 1.8e+7 3.2e+4 8.7e+3 1.3e+1 3.1e+5 3.2e+3
Enron 1.3e+4 1.8e+5 7.2e+5 4.0e+9 5.8e+6 1.0e+6 3.2e+1 4.9e+5 1.5e+3
Images 5.1e+3 4.9e+5 2.5e+8 6.5e+9 2.0e+6 1.8e+6 1.3e+0 1.1e+7 2.3e+3

Wikipedia 4.4e+5 3.4e+6 5.3e+8 5.3e+9 7.5e+5 1.6e+5 2.1e+1 5.0e+7 1.9e+4

Enron: Subject lines of emails in the Enron email corpus [Sty11]. Columns correspond to subject
lines, rows to words, and entries to tf-idf values. This matrix is extremely sparse to begin with.
Wikipedia: Term-document matrix of a fragment of Wikipedia in English. Entries are tf-idf values.
Images: A collection of images of buildings from Oxford [PCI`07]. Each column represents the
wavelet transform of a single 128ˆ 128 pixel grayscale image.
Synthetic: This synthetic matrix simulates a collaborative filtering matrix. Each row corresponds to
an item and each column to a user. Each user and each item was first assigned a random latent vector
(i.i.d. Gaussian). Each value in the matrix is the dot product of the corresponding latent vectors plus
additional Gaussian noise. We simulated the fact that some items are more popular than others by
retaining each entry of each item i with probability 1´ i{m where i “ 0, . . . ,m´ 1.

6.1 Sampling techniques and quality measure

The experiments report the accuracy of sampling according to four different distributions. In Fig-
ure 6.1, Bernstein denotes the distribution of this paper, defined in Lemma 5.3. The Row-L1
distribution is a simplified version of the Bernstein distribution, where pij9|Aij | ¨ }Apiq}1. L1 and
L2 refer to pij9|Aij | and pij9|Aij |

2, respectively, as defined earlier in the paper. The case of L2
sampling was split into three sampling methods corresponding to different trimming thresholds. In
the method referred to as L2 no trimming is made and pij9|Aij |

2. In the case referred to as L2 trim
0.1, pij9|Aij |

2 for any entry where |Aij |
2 ą 0.1 ¨Eijr|Aij |

2s and pij “ 0 otherwise. The sampling
technique referred to as L2 trim 0.01 is analogous with threshold 0.01 ¨ Eijr|Aij |

2s.

Although to derive our sampling probability distributions we targeted minimizing }A ´ B}2, in
experiments it is more informative to consider a more sensitive measure of quality of approximation.
The reason is that, due to scaling, for a number of values of s one has }A´B}2 ą }A}2 which would

3Notice that the function
ř

ρipζq is monotonically decreasing for ζ ą 0 hence the solution is indeed unique.
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suggest that the all zeros matrix is a better sketch forA than the sampled matrix. We will see that this
is far from being the case. As a trivial example, consider the possibilityB « 10A. Clearly,B is very
informative of A although }A ´ B} ě 9}A}. To avoid this pitfall, we measure }PB

k A}F {}Ak}F ,
where PB

k is the projection on the top k left singular vectors of B. Here, Ak “ PA
k A is the optimal

rank k approximation of A. Intuitively, this measures how well the top k left singular vectors of
B capture A, compared to A’s own top-k left singular vectors. We also compute }AQB

k }F {}Ak}F

where QB
k is the projection on the top k right singular vectors of A. Note that, for a given k,

approximating the row-space is harder than approximating the column-space since it is of dimension
n which is significantly larger than m, a fact also borne out in the experiments. In the experiments
we made sure to choose a sufficiently wide range of sample sizes so that at least the best method for
each matrix goes from poor to near-perfect both in approximating the row and the column space. In
all cases we report on k “ 20 which is close to the upper end of what could be efficiently computed
on a single machine for matrices of this size. The results for all smaller values of k are qualitatively
indistinguishable.

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
   6.7	
   7	
  
0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
   6.7	
   7	
  
0.75	
  

0.8	
  

0.85	
  

0.9	
  

0.95	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
  
0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
  

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
   6.7	
   7	
  
0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
   6.7	
   7	
  
0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
  
0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

4	
   4.7	
   5	
   5.7	
   6	
  

Figure 1: Each vertical pair of plots corresponds to one matrix. Left to right: Wikipedia, Images,
Enron, Synthetic . Each top plot shows the quality of approximation ratio, }P k

BA}F {}Ak} (bottom
plots show }AQk

B}F {}Ak}). The number of samples s is on the x-axis in log scale x “ log10psq.

6.2 Insights

The experiments demonstrate three main insights. First and most important, Bernstein-sampling is
never worse than any of the other techniques and is often strictly better. A dramatic example of
this is the Wikipedia matrix for which it is far superior to all other methods. The second insight
is that L1-sampling, i.e., simply taking pij “ |Aij |{}A}1, performs rather well in many cases.
Hence, if it is impossible to perform more than one pass over the matrix and one can not even obtain
an estimate of the ratios of the L1-weights of the rows, L1-sampling seems to be a highly viable
option. The third insight is that for L2-sampling, discarding small entries may drastically improve
the performance. However, it is not clear which threshold should be chosen in advance. In any case,
in all of the example matrices, both L1-sampling and Bernstein-sampling proved to outperform or
perform equally to L2-sampling, even with the correct trimming threshold.
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