A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Yining Wang
Yu-Xiang Wang
Aarti Singh

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

Subspace clustering groups data into several low-rank subspaces. In this paper, we propose a theoretical framework to analyze a popular optimization-based algorithm, Sparse Subspace Clustering (SSC), when the data dimension is compressed via some random projection algorithms. We show SSC provably succeeds if the random projection is a subspace embedding, which includes random Gaussian projection, uniform row sampling, FJLT, sketching, etc. Our analysis applies to the most general deterministic setting and is able to handle both adversarial and stochastic noise. It also results in the first algorithm for privacy-preserved subspace clustering.

1. Introduction

Subspace clustering groups a collection of data points into k clusters so that data points within a single cluster lie near some low rank subspace. It has found a wide range of applications as many high dimensional data can be approximated by a union of low rank subspaces. Some examples include motion trajectories (Costeira & Kanade, 1998), face images (Basri & Jacobs, 2003), network hop counts (Eriksson et al., 2012), movie ratings (Zhang et al., 2012) and social graphs (Jalali et al., 2011).

A large body of research has been devoted to subspace clustering in the last decade. Recently a class of convex optimization based algorithms, in particular Low Rank Representation (LRR, (Liu et al., 2013)) and Sparse Subspace Clustering (SSC, (Elhamifar & Vidal, 2013)), have drawn much interest from the literature. It is known that SSC enjoys superb performance in practice (Elhamifar & Vidal, 2009) and have theoretical guarantee under fairly general conditions (Soltanolkotabi et al., 2012; Wang & Xu, 2013).

Let $X \in \mathbb{R}^{d \times N}$ denote the data matrix, where d is the ambient dimension and N is the number of data points. For noiseless data (i.e., data points lie exactly on low-rank subspaces), the exact SSC algorithm solves the optimization problem in Eq. (1.1) for each data point x_i to obtain self regression solutions $c_i \in \mathbb{R}^N$.

$$
\min_{c_i \in \mathbb{R}^N} \|c_i\|_1, \quad \text{s.t.} \quad x_i = Xc_i, \quad c_{ii} = 0.
$$ (1.1)

For noisy data, the following Lasso version of SSC is often used in practice:

$$
\min_{c_i \in \mathbb{R}^N} \|x_i - Xc_i\|^2 + 2\lambda\|c_i\|_1, \quad \text{s.t.} \quad c_{ii} = 0.
$$ (1.2)

Although success conditions for both exact SSC and Lasso SSC have been extensively analyzed in previous literature, in practice it is inefficient or even infeasible to operate on data with high dimension. Some types of dimension reduction is usually required. In this paper, we propose a theoretical framework that analyzes SSC under many popular dimension reduction settings, including:

- **Compressive measurement**: For compressive measurement dimensionality-reduced data are obtained by multiplying the original data typically with a random Gaussian matrix. We show that SSC provably succeeds when the projected dimension is at the order of the maximum intrinsic rank of each subspace.

- **Efficient computation**: By using fast Johnson-Lindenstrauss transform (Ailon & Chazelle, 2009) or sketching (Charikar et al., 2004; Clarkson & Woodruff, 2013) one can computationally efficiently reduce the data dimension while still preserving important structures in the underlying data. We prove similar results for both FJLT and sketching.

- **Handling missing data**: In many applications the data matrix may be incomplete due to measurement and sensing limits. It is shown in this paper that when data meet some incoherent criteria uniform feature sampling suffices for SSC.
• Data privacy: Privacy is an important concern in modern machine learning applications. It was shown that random Johnson-Lindenstrauss transform with added Gaussian noise preserves both information-theoretic (Zhou et al., 2009) and differential privacy (Kenthapadi et al., 2013). We provide a utility analysis which shows that SSC can achieve exact subspace detection despite stringent privacy constraints.

A key observation is that all projections for the aforementioned settings are subspace embeddings, which means they uniformly preserve the two norm of any vector belonging to a low-rank subspace. Our analysis applies to the fully deterministic setting under which both subspaces and data points within each subspace are placed deterministically. It can also handle data corrupted by deterministic or stochastic noise. This generalizes previous work (Heckel et al., 2014) which only applies to semi-random models with noiseless data. The fully deterministic setting poses more challenges because the perturbation of dual directions introduced in (Soltanolkotabi et al., 2012) cannot be easily bounded if exact SSC is used. As a result, even for noiseless data, we employ a Lasso SSC formulation to obtain strong convexity in the dual problem.

2. Problem setup

Notations: The uncorrupted data matrix is denoted as \(\mathbf{Y} \in \mathbb{R}^{d \times N} \), where \(d \) is the ambient dimension and \(N \) is the total number of data points. \(\mathbf{Y} \) is normalized so that each column has unit two norm. Each column in \(\mathbf{Y} \) belongs to a union of \(k \) subspaces \(U^{(1)} \cup \cdots \cup U^{(k)} \). For each subspace \(U^{(\ell)} \) we write \(\mathbf{Y}^{(\ell)} = (y^{(\ell)}_1, \ldots, y^{(\ell)}_N) \) for all columns belonging to \(U^{(\ell)} \), where \(N_\ell \) is the number of data points in \(U^{(\ell)} \) and \(\sum_{\ell=1}^{k} N_\ell = N \). We assume the \(\ell \)th subspace \(U^{(\ell)} \) is \(r_\ell \)-dimensional and define \(r = \max_\ell r_\ell \). In addition, we use \(U^{(\ell)} \in \mathbb{R}^{d \times r_\ell} \) to represent an orthonormal basis of \(U^{(\ell)} \). The observed matrix is denoted by \(\tilde{\mathbf{X}} \in \mathbb{R}^{\tilde{d} \times N} \). Under the noiseless setting we have \(\mathbf{X} = \mathbf{Y} \); for the noisy setting we have \(\mathbf{X} = \mathbf{Y} + \mathbf{Z} \) where \(\mathbf{Z} \in \mathbb{R}^{\tilde{d} \times N} \) is a noise matrix which can be either deterministic or stochastic.

We use \(-i \) to denote all except the \(i \)th column in a data matrix. For example, \(\mathbf{Y}_{-i} = (y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_N) \) and \(\mathbf{Y}^{(\ell)}_{-i} = (y^{(\ell)}_1, \ldots, y^{(\ell)}_{i-1}, y^{(\ell)}_{i+1}, \ldots, y^{(\ell)}_N) \). For any matrix \(\mathbf{A} \), let \(\mathcal{Q}(\mathbf{A}) = \text{conv}(\pm a_1, \ldots, \pm a_N) \) denote the symmetric convex hull spanned by all columns in \(\mathbf{A} \). For any subspace \(\mathcal{U} \) and vector \(\mathbf{v} \), denote \(\mathcal{P}_\mathcal{U}\mathbf{v} = \arg\min_{\mathbf{u} \in \mathcal{U}} \|\mathbf{u} - \mathbf{v}\| \) as the projection of \(\mathbf{v} \) onto \(\mathcal{U} \).

Methods: The first step is to perform dimensionality reduction on the observation matrix \(\tilde{\mathbf{X}} \). More specifically, for a target projection dimension \(p < d \), the projected observation matrix \(\tilde{\mathbf{X}}' \in \mathbb{R}^{p \times N} \) is obtained by first computing \(\mathbf{X} = \mathbf{\Psi}\mathbf{X} \) and then normalizing it so that each column in \(\tilde{\mathbf{X}}' \) has unit two norm. Afterwards, Lasso self-regression as formulated in Eq. (1.2) is performed for each column in \(\tilde{\mathbf{X}}' \) to obtain the similarity matrix \(\mathbf{C} = \{c_{ij}^N\}_{i=1}^{N} \in \mathbb{R}^{N \times N} \). Spectral clustering is then be applied to \(\mathbf{C} \) to obtain an explicit clustering of \(\mathbf{X} \). In this paper we use the normalized-cut algorithm (Shi & Malik, 2000) for spectral clustering.

Evaluation measures: To evaluate the quality of obtained similarity matrix \(\mathbf{C} \), we consider the Lasso subspace detection property defined in (Wang & Xu, 2013). More specifically, \(\mathbf{C} \) satisfies Subspace Detection Property (SDP) if for each \(i \in \{1, \cdots, N\} \) the following holds: 1) \(c_{ii} \) is a non-trivial solution. That is, \(c_{ii} \) is not a zero vector; 2) if \(c_{ij} \neq 0 \) then data points \(x_i \) and \(x_j \) belong to the same subspace cluster. The second condition alone is referred to as “Self-Expressiveness Property” (SEP) in (Elhamifar & Vidal, 2013). Note that we do not require \(c_{ij} \neq 0 \) for every pair of \(x_i \) and \(x_j \) belonging to the same cluster. We also remark that in general SEP is not necessary for spectral clustering to succeed, cf. (Wang & Xu, 2013).

3. Dimension reduction methods

In this section we review several popular dimensionality reduction methods and show that they are subspace embeddings. A linear projection \(\mathbf{\Psi} \in \mathbb{R}^{p \times d} \) is said to be a subspace embedding if for some \(d \)-dimensional subspace \(\mathcal{L} \subseteq \mathbb{R}^{\tilde{d}} \) the following holds:

\[
\Pr \left(||\mathbf{\Psi}\mathbf{x}|| \in (1 \pm \epsilon)||\mathbf{x}||, \forall \mathbf{x} \in \mathcal{L} \right) \geq 1 - \delta.
\]

The following proposition is a simple property of subspace embeddings, which we prove in Appendix A.1.

Proposition 1. Fix \(\epsilon, \delta > 0 \). Suppose \(\mathbf{\Psi} \) is a subspace embedding with respect to \(\mathcal{B} = \{\text{span}(U^{(\ell)} \cup U^{(\ell')}); \ell, \ell' \in \{1, \cdots, k\} \cup \{x_i; i \in [N]\}\} \) with parameters \(r' = 2r, \epsilon' = \epsilon/3 \) and \(\delta' = 2\log((k + N)/\delta) \). Then with probability \(\geq 1 - \delta \) for all \(\mathbf{x}, \mathbf{y} \in U^{(\ell)} \cup U^{(\ell')} \) we have

\[
|\langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{\Psi}\mathbf{x}, \mathbf{\Psi}\mathbf{y} \rangle| \leq \epsilon \left(\frac{||\mathbf{x}||^2 + ||\mathbf{y}||^2}{2} \right);
\]

furthermore, for all \(\mathbf{x} \in \{x_1, x_2, \cdots, x_N, z_N\} \) the following holds:

\[
(1 - \epsilon)||\mathbf{x}||^2_2 \leq \||\mathbf{\Psi}\mathbf{x}||_2^2 \leq (1 + \epsilon)||\mathbf{x}||_2^2.
\]

1 In semi/fully random models the underlying subspaces and/or data points are distributed uniformly at random. Detailed definitions can be found in (Soltanolkotabi et al., 2012).

2 It is almost sufficient for perfect clustering both in practice (Elhamifar & Vidal, 2013) and in theory (Wang et al., 2015).
3.1. Random Gaussian projection

In a random Gaussian projection matrix Ψ each entry Ψ_{ij} is generated from i.i.d. Gaussian distributions $N(0, 1/\sqrt{p})$, where p is the target dimension after projection. Using standard Gaussian tail bounds and Johnson-Lindenstrauss argument we have the following proposition, which is proved in Appendix A.1.

Proposition 2. Gaussian random matrices $\Psi \in \mathbb{R}^{p \times d}$ is a subspace embedding with respect to B if

$$p \geq 2e^{-2}(r+\log(2k^2/\delta)+\sqrt{4r}\log(2k^2/\delta)+12\log(4N/\delta)). \quad (3.4)$$

3.2. Uniform row sampling

For uniform row sampling each row in the observed data matrix X is sampled independently at random so that the resulting matrix has p non-zero rows. Formally speaking, each row of the projection matrix Ω is sampled i.i.d. from the distribution $Pr[\Omega_i = \sqrt{p}e_j] = \frac{1}{p}$, where $i \in [p]$, $j \in [d]$ and e_j is a d-dimensional indicator vector with only the jth entry not zero.

For uniform row sampling to work, both the observation matrix X and the column space of the uncorrupted data matrix Y should satisfy certain incoherence conditions. In this paper, we apply the following two types of incoherence/spikiness definitions, which are widely used in the low-rank matrix completion literature (Recht, 2011; Balzano et al., 2010; Krishnamurthy & Singh, 2014).

Definition 3 (Column space incoherence). Suppose U is the column space of some matrix and $\text{rank}(U) = r$. Let $U \in \mathbb{R}^{d \times r}$ be an orthonormal basis of U. The incoherence of U is defined as

$$\mu(U) := \frac{r}{d} \max_{i=1}^{d} \frac{\|U_{(i)}\|_2}{\|U\|_2}, \quad (3.5)$$

where $U_{(i)}$ indicates the ith row of U.

Definition 4 (Column spikiness). For a vector $x \in \mathbb{R}^d$, the spikiness of x is defined as

$$\mu(x) := d \|x\|_\infty / \|x\|_2, \quad (3.6)$$

where $\|x\|_\infty = \max_i |x_i|$ denotes the vector infinite norm.

We have the following proposition for the uniform row sampling operator Ω, which we prove in Appendix A.1.

Proposition 5. Suppose $\max_{i=1}^{d} \mu(U_{(i)}) \leq \mu_0$ and $\max_{i=1}^{N} \max(\mu(x_i), \mu(z_i)) \leq \mu_0$ for some constant $\mu_0 > 0$. The uniform sampling operator Ω is a subspace embedding with respect to B if

$$p \geq 8e^{-2}\mu_0(r \log(4rk^2/\delta) + \log(8N/\delta)). \quad (3.7)$$

3.3. FJLT and sketching

The Fast Johnson-Lindenstrauss Transform (FJLT, (Ailon & Chazelle, 2009)) computes a compressed version of a data matrix $X \in \mathbb{R}^{d \times N}$ using $O(d \log d + p)$ operations per column with high probability. The projection matrix Φ can be written as $\Phi = PHD$, where $P \in \mathbb{R}^{p \times d}$ is a sparse JL matrix, $H \in \mathbb{R}^{d \times d}$ is a deterministic Walsh-Hadamard matrix and $D \in \mathbb{R}^{d \times d}$ is a random diagonal matrix. Details of FJLT can be found in (Ailon & Chazelle, 2009).

Sketching (Charikar et al., 2004; Clarkson & Woodruff, 2013) is another powerful tool for dimensionality reduction on sparse inputs. The sketching operator $S : \mathbb{R}^d \rightarrow \mathbb{R}^p$ is constructed as $S = \Pi \Sigma$, where Π is a permutation matrix and Σ is a random sign diagonal matrix. The projected vector Sx can be computed in $O(nnz(x))$ time, where $nnz(x)$ is the number of nonzero entries in x.

The following two propositions show that both FJLT and sketching are subspace embeddings. In fact, they are oblivious in the sense that they work for any low-dimensional subspace L.

Proposition 6. (Clarkson & Woodruff, 2013) The FJLT operator Φ is an oblivious subspace embedding if $p = \Omega(r/c^2)$, with δ considered as a constant.

Proposition 7. (Avron et al., 2014) The sketching operator S is an oblivious subspace embedding if $p = \Omega(r^2/(c^2 \delta))$.

4. Main results

We present general geometric separation conditions for Lasso sparse subspace clustering (Eq. (1.2)) to succeed for dimensionality-reduced data in the fully deterministic setting; that is, both subspaces and data points within subspaces are deterministically distributed. In addition, our analysis reveals that SSC is able to robustly detect the correct subspaces with substantially compressed data even when the data points are adversarially perturbed, stochastically contaminated, or subject to formal privacy constraints. These contributions significantly expand the previous provable results on the same subject that works only with noiseless data generated from the “semi-random” model (Heckel et al., 2014).

We begin our analysis with two key concepts introduced in the seminal work of Soltanolkotabi and Candès (Soltanolkotabi et al., 2012): subspace incoherence and inradius. Subspace incoherence characterizes how well the subspaces associated with different clusters are separated. It is based on the dual direction of the optimization problem in Eq. (1.1) and (1.2), which is defined as follows:

Definition 8 (Dual direction, (Soltanolkotabi et al., 2012; Wang & Xu, 2013)). Fix a column x of X belonging to subspace $U^{(i)}$. Its dual direction $\nu(x)$ is defined as the
solution to the following dual optimization problem: ³
\[
\max_{\nu \in \mathbb{R}^d} \langle x, \nu \rangle - \frac{\lambda}{2} \nu^T \nu, \quad s.t. \|X^T \nu\|_\infty \leq 1. \tag{4.1}
\]

Note that Eq. (4.1) has unique solution when \(\lambda > 0 \).

The subspace incoherence for \(U^{(\ell)} \), \(\mu_\ell \), is defined in Eq. (4.2). Note that it is not related to the column subspace incoherence defined in Eq. (3.5). The smaller \(\mu_\ell \) is the further \(U^{(\ell)} \) is separated from the other subspaces.

Definition 9 (Subspace incoherence, (Soltanolkotabi et al., 2012; Wang & Xu, 2013)). Subspace incoherence \(\mu_\ell \) for subspace \(U^{(\ell)} \) is defined as
\[
\mu_\ell := \max_{x \in \mathcal{X} \setminus \mathcal{X}^{(\ell)}} \|V^{(\ell)} x\|_\infty, \tag{4.2}
\]
where \(V^{(\ell)} = (v(x_1^{(\ell)}), \ldots, v(x_{N_\ell}^{(\ell)}) \) and \(v(x) = \mathcal{P}_U \nu(x) / \|\mathcal{P}_U \nu(x)\|_2 \). \(v(x) \) is the dual direction of \(x \) defined in Eq. (4.1).

The concept of inradius characterizes how well data points are contained within a single subspace. More specifically, we have the following definition:

Definition 10 (Inradius, (Soltanolkotabi et al., 2012; Wang & Xu, 2013)). For subspace \(U^{(\ell)} \), its inradius \(\rho_\ell \) is defined as
\[
\rho_\ell := \min_{\ell=1,\ldots,N_\ell} r(\mathcal{Q}(Y^{(\ell)}_\ell)), \tag{4.3}
\]
where \(r(\cdot) \) denotes the radius of the largest ball inscribed in a convex body.

The larger \(\rho_\ell \) is the more uniformly data points are distributed in the \(\ell \)th subspace. Note that unlike subspace incoherence, the inradius is defined in terms of the uncorrected data \(Y \). We also remark that both \(\mu_\ell \) and \(\rho_\ell \) are between 0 and 1 because of normalization.

Success condition for exact SSC was proved in (Soltanolkotabi et al., 2012) and was generalized to the noisy case in (Wang & Xu, 2013). Below we cite Theorem 6 and Theorem 8 in (Wang & Xu, 2013) for a success condition of Lasso SSC. In general, Lasso SSC succeeds when there is a sufficiently large gap between subspace incoherence and inradius. Results are restated below, with minor simplification in our notation.

Theorem 11 (Wang & Xu, 2013, Theorem 6 and 8). Suppose \(X = Y + Z \) where \(Y \) is the uncorrected data matrix and \(Z = (z_1, \ldots, z_N) \) is a deterministic noise matrix that satisfies \(\max_{i=1}^N \|z_i\|_2 \leq \eta \). Define \(\rho := \min_{\ell} \rho_\ell \). If
\[
\eta \leq \min_{\ell=1,\ldots,k} \frac{\rho(\rho_\ell - \mu_\ell)}{2\rho_\ell + 2}, \tag{4.4}
\]
then subspace detection property holds for the Lasso SSC algorithm in Eq. (1.2) if the regularization coefficient \(\lambda \) is in the range
\[
\max_{\ell=1,\ldots,k} \frac{\eta(1 + \eta)(2 + \rho_\ell)}{\rho_\ell - \mu_\ell - 2\eta} < \lambda < \rho - 2\eta - \eta^2. \tag{4.5}
\]

In addition, if \(Z_{ij} \sim \mathcal{N}(0, \sigma_z^2/d) \) are independent Gaussian noise with variance \(\sigma_z^2 := \max_{ij} \sigma_{ij}^2 \) satisfying
\[
\sqrt{\frac{\log N}{d}} \sigma(1 + \sigma) < C \min_{\ell=1,\ldots,k} \left\{ \rho, r^{-1/2}, \rho_\ell - \mu_\ell \right\}, \tag{4.6}
\]
for sufficiently small constant \(C \geq 1/80 \), then with probability at least \(1 - \frac{10}{\sqrt{d}} \) the subspace detection property holds if \(\lambda \) is in the range
\[
C_1 \sigma(1 + \sigma) \sqrt{\frac{\log N}{d}} < \lambda < C_2 \sigma(1 + \sigma) \sqrt{\frac{\log N}{d}}. \tag{4.7}
\]
Here \(C_1 \leq 80 \) and \(C_2 \leq 20 \) are absolute constants.

In the remainder of this section we prove general success conditions for Lasso SSC on dimensionality-reduced data. We will first describe the result for the noiseless case and then the results are extended to handle a small amount of adversarial perturbation or a much larger amount of stochastic noise. A performance guarantee under differential privacy can then be stated as a simple corollary of the noisy recovery result. The basic idea common in all of the upcoming results is to show that the subspace incoherence and inradius (therefore the geometric gap) are approximately preserved under dimension reduction.

4.1. The noiseless case

We first bound the perturbation of dual directions when the data are noiseless.

Lemma 12 (Perturbation of dual directions, the noiseless case). Assume \(\lambda < 1/4 \). Fix a column \(x \) in \(X \) with dual direction \(\nu = \mathcal{Q}(x) \) and \(\nu = \mathcal{Q}(x) \) defined in Eq. (4.1) and (4.2). Let \(\bar{X} \) denote the projected data matrix \(\mathcal{Q}X \) and \(\bar{X}' \) denote the normalized version of \(\bar{X} \). Suppose \(\nu^* \) and \(w^* \) are computed using the normalized projected data matrix \(\bar{X}' \). If \(\bar{X} \) satisfies Eq. (3.2, 3.3) with parameter \(\epsilon \) and \(\rho \) is smaller than \(\max(1, \|\nu\|) \) then with probability \(\geq 1 - \delta \) the following holds for all \(w \in X \cap X' \):
\[
\left| \langle \nu, w \rangle - \langle \nu^*, w' \rangle \right| \leq 32 \sqrt{\epsilon/\lambda + 2\epsilon}. \tag{4.8}
\]
As a simple corollary, perturbation of subspace incoherence can then be bounded as in Corollary 13.

Corollary 13 (Perturbation of subspace incoherence, the noiseless case). Assume the same notations in Lemma 12.
Let μ_ℓ and $\tilde{\mu}_\ell$ be the subspace incoherence of the ℓth subspace before and after dimension reduction. Then with probability $1 - N\delta$ the following holds:

$$\tilde{\mu}_\ell \leq \mu_\ell + 32\sqrt{e/\lambda} + 2\epsilon, \quad \forall \ell = 1, \ldots, k. \quad (4.9)$$

The following lemma bounds the perturbation of inradius for each subspace.

Lemma 14 (Perturbation of inradius). Fix $\ell \in \{1, \ldots, k\}$ and $\delta, \epsilon > 0$. Let $\tilde{Y} = Y^{(i)} = (y_1, \ldots, y_{N\ell}) \subseteq U^{(i)}$ be the noiseless $d \times N_\ell$ matrix with all columns belonging to $U^{(i)}$ with unit norm. Suppose $\tilde{Y} = \Psi Y \in \mathbb{R}^{p \times N_\ell}$ is the projected matrix and \tilde{Y}' scales every column in \tilde{Y} so that they have unit norm. Let ρ_ℓ and $\tilde{\rho}_\ell$ be the radius of subspace $U^{(i)}$ before and after dimensionality reduction, defined on Y and Y' respectively. If Ψ satisfies Eq. (3.2,3.3) with parameter ϵ then with probability $1 - \delta$ the following holds:

$$\tilde{\rho}_\ell \geq \rho_\ell / (1 + \epsilon). \quad (4.10)$$

With perturbation bounds on both subspace incoherence and inradius we can easily prove the following main theorem, which gives sufficient success condition for Lasso SSC on dimensionality-reduced noisless data.

Theorem 15. Suppose $X \in \mathbb{R}^{d \times N}$ is a noiseless input matrix with subspace incoherence $\mu_\ell^k_{i=1}$ and inradius $\rho_\ell^k_{i=1}$. Assume $\mu_\ell < \rho_\ell$ for all $\ell \in \{1, \ldots, k\}$. Let \tilde{X}' be the normalized data matrix after compression. Assume $\lambda < 1/4$ and $\lambda < \rho/2$. If Ψ satisfies Eq. (3.2,3.3) with parameter ϵ then Lasso SSC satisfies subspace detection property with probability $1 - \delta$, if ϵ is upper bounded by

$$\epsilon \leq \min \left\{ \frac{1}{2}, \frac{\Delta}{2(2 + \rho)}, c_1 \lambda \Delta^2 \right\}, \quad (4.11)$$

where $c_1 > 0$ is some absolute constant and $\Delta = \min_{\ell \in \{1, \ldots, k\}} (\rho_\ell - \mu_\ell)$ is the minimum gap between subspace incoherence and inradius for each subspace.

We make several remarks on Theorem 15. First, an upper bound on ϵ implies a lower bound on projection dimension p, and exact p values vary for different data compression schemes. In addition, even for noiseless data the regularization coefficient λ cannot be too small if projection error ϵ is present (recall that $\lambda \to 0$ corresponds to the exact SSC formulation). This is because when λ goes to zero the strong convexity of the dual optimization problem decreases. As a result, small perturbation on X could result in drastic changes of the dual direction and Lemma 12 fails subsequently. On the other hand, as λ increases the similarity graph connectivity decreases because the optimal solution to Eq. (1.2) becomes sparser. To guarantee the obtained solution is nontrivial (i.e., at least one nonzero entry in c_i), λ must not exceed $\rho/2$.

4.2. The noisy case

When the input matrix is corrupted with noise, Lemma 14 remains unchanged because the inradius is defined in terms of the noiseless data matrix Y. Therefore, we only need to prove a noisy version of Lemma 12 that bounds the perturbation of dual directions.

Lemma 16 (Perturbation of dual directions, the noisy case). Suppose $X = Y + Z$ where Y is the uncorrupted data matrix and Z is the noise matrix with $\max_{i=1, \ldots, n} \|z_i\|_2 \leq \eta$. Assume $\lambda < 1/4$. Fix a column x with dual direction v and v defined in Eq. (4.1) and (4.2). Suppose $\tilde{Y} = \Psi Y$ is the projected noiseless data matrix and \tilde{Y}' is the normalized version of Y. Let $\tilde{X}' = \tilde{Y}' + \tilde{Z}$ be the noisy observation after projection, where $\tilde{Z} = \Psi Z$ is the projected noise. If Ψ satisfies Eq. (3.2,3.3) with parameter ϵ and $\epsilon < 1/ \max(1, \|v\|)$ then with probability $\geq 1 - \delta$ the following holds for all $w \in X, X^{(i)}$:

$$\|\langle v, w \rangle - \langle v^*, \tilde{w} \rangle\| \leq 16 \sqrt{\frac{5\eta^2}{\rho \epsilon} + \frac{8(\epsilon + 3\eta)}{\lambda} + 2\epsilon}. \quad (4.12)$$

With Lemma 16 the following corollary on subspace incoherence perturbation immediately follows.

Corollary 17 (Perturbation of subspace incoherence, the noisy case). Assume the conditions as in Lemma 16. Let μ_ℓ and $\tilde{\mu}_\ell$ be the subspace incoherence before and after dimension reduction. Then with probability $\geq 1 - N\delta$,

$$\tilde{\mu}_\ell \leq \mu_\ell + 16 \sqrt{\frac{5\eta^2}{\rho \epsilon} + \frac{8(\epsilon + 3\eta)}{\lambda} + 2\epsilon}, \quad \forall \ell \in \{1, \ldots, k\}. \quad (4.13)$$

Finally, we have Theorem 18 and Theorem 19 as simple consequences of Corollary 17 and Lemma 14.

Theorem 18 (Compressed-SSC under Deterministic noise). Suppose $X = Y + Z$ is a noisy input matrix with subspace incoherence $\mu_\ell^k_{i=1}$ and inradius $\rho_\ell^k_{i=1}$. Assume $\max_{i=1, \ldots, n} \|z_i\|_2 \leq \eta$ and $\mu_\ell < \rho_\ell$ for all $\ell \in \{1, \ldots, k\}$. Suppose $\tilde{X}' = \tilde{Y}' + \tilde{Z}$ where \tilde{Y}' is the normalized uncorrupted data matrix after compression and $\tilde{Z} = \Psi Z$ is the projected noise matrix. Assume η satisfies

$$\eta \leq \min_{\ell=1, \ldots, k} \frac{\rho(\rho_\ell - \mu)}{96}. \quad (4.14)$$

If Ψ satisfies Eq. (3.2,3.3) with parameter ϵ and $\lambda = \rho/4$, then Lasso SSC satisfies the subspace detection property with probability $\geq 1 - \delta$. Here ϵ is upper bounded by

$$\epsilon \leq \min \left\{ \frac{1}{3}, \frac{\Delta}{4(2 + \rho)}, \frac{\lambda}{8} \left(c_2 \Delta^2 - \frac{5\eta^2}{\rho} \right) - 3\eta \right\}, \quad (4.15)$$

where $c_2 > 0$ is some absolute constant and $\Delta = \min_{\ell \in \{1, \ldots, k\}} (\rho_\ell - \mu_\ell)$ is the minimum gap between subspace incoherence and inradius.
Theorem 19 (Compressed-SSC under Gaussian noise).
Define the same positive quantities \(\{\mu_i\}_{i=1}^k, \{\nu_i\}_{i=1}^k, \rho, \Delta\) and projection matrix \(\Psi\) as in Theorem 18. Assume each column of \(Z\) is sampled from \(N(0, \frac{\sigma^2}{N} I)\). Suppose \(\Psi\) is a linear transform that satisfies Eq. (3.2,3.3) with parameter \(\epsilon\), and moreover its spectral norm satisfies \(|\Psi|\leq \xi \sqrt{dp}\) (For Gaussian JL projection \(\xi \leq 3\) with high probability).

In addition, assume the noise parameter \(\sigma\) satisfies
\[
\sqrt{\frac{\log N}{p}} \sigma (1 + \sigma) \leq \frac{C}{4\epsilon^2} \min_{\ell=1,...,k} \left\{ \rho, \frac{r^{-1/2}}{\rho \ell - \mu_\ell} \right\} \tag{4.16}
\]
with the same constant \(C\) as in Eq. (4.6). Then Lasso SSC with \(\lambda = \rho/\Delta\) satisfies the subspace detection property with probability \(\geq 1 - 8/N - \delta\), if \(\epsilon\) is upper bounded by
\[
\epsilon \leq \min \left\{ \frac{1}{3}, \frac{\Delta}{4(2 + \rho)} \right\} \frac{\lambda}{8} \left(c_2 \Delta^2 - \frac{45\sigma^2}{\rho} \right) - 9\sigma \right\} \tag{4.17}
\]
Here \(\Delta = \min_i (\rho_i - \mu_i)\) is the minimum gap between subspace incoherence and inradius.

These results put forward an interesting view of the subspace clustering problem in terms of resource allocation. The critical geometric gap \(\Delta\) (called “Margin of Error” in Wang & Xu (2013)) can be viewed as the amount of resource that we have for a problem while preserving the subspace detection property. It can be used to tolerate noise, compress the data matrix, or alleviate the graph connectivity problem of SSC (Wang et al., 2013). For example, if the noise level is high then it will use more of \(\Delta\) and as a result we can only compress the data less aggressively, as shown in Eq. (4.15) and (4.17).

4.3. Subspace clustering under privacy constraints

Another common motivation to compress the data before data analysis is to protect data privacy. It has been formally shown that random projections (at least with Gaussian random matrices) protect information privacy (Zhou et al., 2009). Stronger privacy protection can be enforced by injecting additional noise to the dimension reduced data (Kenthapadi et al., 2013). Algorithmically, this basically involves adding iid Gaussian noise to the data after we apply a Johnson-Lindenstrauss transform \(\Psi\) of choice to \(X\) and normalize every column. This procedure guarantees differential privacy (Dwork et al., 2006; Dwork, 2006) at the attribute level, which prevents any single entry of the data matrix from being identified “for sure” given the privatized data and arbitrary side information. The amount of noise to add is calibrated according to how “unuse” we need and how “spiky” (Definition 4) each data point can be.

Due to space constraints, we will describe the detailed definition and our technical results on differential privacy preserved subspace clustering in the supplementary document. We show that Lasso-SSC can still achieve exact subspace detection despite differential privacy constraints. To the best of our knowledge, this is the first result of its kind for subspace clustering and it is not possible without dimensionality reduction. So the knife cuts in both sides: dimension-reduction helps in both computational efficiency and privacy protection.

On the other hand, we are not able to generalize the result to an even stronger form of differential privacy that protects each full column in the data matrix. Such privacy requirements make more sense if we consider each column corresponding to an individual. In the supplementary document we present an argument showing that it is impossible to protect differential privacy of this kind if subspace detection property holds with high probability. This calls for a more realistic measure of utility for subspace clustering, for example, percentage of correctly clustered points or closeness of recovered subspaces to the ground truth.

5. Proofs

In this section we give proof sketches for the key lemmas. Complete proofs are deferred to Appendix A.

Proof sketch of Lemma 12. Let \(f : \mathbb{R}^d \to \mathbb{R}, \nu \in \mathbb{R}^d\) and \(\tilde{f} : \mathbb{R}^p \to \mathbb{R}, \nu^* \in \mathbb{R}^p\) denote the objective functions and optimal solutions of the dual problem in Eq. (4.1) on the original data and projected data, respectively. Note that for noiseless data, \(\nu(x)\) lies exactly on the subspace to which \(\nu\) belongs and the same holds after linear projection. Suppose \(\nu^* \in \mathbb{R}^d\) is a properly shrunk version of \(\nu\) after random projection so that \(\nu^*\) is feasible to the projected dual optimization problem. Since random projection preserves inner products, one can show that with high probability \(\tilde{f}(\nu^*)\) is close to \(f(\nu)\). On the other hand, \(\tilde{f}(\nu^*)\) is close to \(\tilde{f}(\nu^*)\) where \(\nu^* \in \mathbb{R}^p\) is some feasible solution to the dual problem on original data, obtained by inversely projecting \(\nu^*\) onto the original subspace and properly shrink it so that it is feasible. In general, we have the following:
\[
\tilde{f}(\nu^*) \approx f(\nu) \iff f(\nu^*) \approx \tilde{f}(\nu^*) < \tilde{f}(\nu^*). \tag{5.1}
\]

The difference \(|\tilde{f}(\nu^*) - \tilde{f}(\nu^*)|\) can then be upper bounded by applying Eq. (5.1). Consequently, one can bound the dual direction perturbation \(|\nu^* - \nu^*|\) by noting that the dual problem in Eq. (4.1) is strongly convex for both the original data and the projected data. With the upper bound on \(|\nu^* - \nu^*|\) we can easily bound the inner product preservation \(|\nu, \nu^* - \nu^*|\) because \(\nu^* - \nu^* \approx (\nu, \nu^*)\) and \(\nu^*\) is nothing but a normalized version of \(\nu\).

\[\Box\]

This requires uniform inner product preservation between two low-rank subspaces. Also, there might be multiple \(\nu\) that correspond to \(\nu^*\). Any of them can be taken.
A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Proof sketch of Lemma 14. For notational simplicity re-define \(\mathbf{Y} = \mathbf{Y}_{(t)} \) and \(\mathbf{Y}' = \mathbf{Y}_{(t)}' \) for some fixed data point \(x_{(t)} \). Let \(\mathcal{Q}(\mathbf{Y}) \) and \(\mathcal{Q}(\mathbf{Y}') \) denote the convex hull of the original and (normalized) projected data. Suppose \(C, C' \) are the largest balls inscribed in \(\mathcal{Q}(\mathbf{Y}) \) and \(\mathcal{Q}(\mathbf{Y}') \). Let \(\hat{c} \) be the point that lies at the intersection of \(\partial C \) and \(\partial \mathcal{Q}(\mathbf{Y}) \). By definition, \(\| \hat{c} \| = \rho(\mathcal{Q}(\mathbf{Y})) \). Suppose \(c \) lies in the original data space and it corresponds to \(\hat{c} \) after projection (i.e., \(\hat{c} = \Psi c \)). It is easy to prove that \(c \) does not lie at the interior of \(\mathcal{Q}(\mathbf{Y}) \) and hence \(\| c \| \) is lower bounded by \(\rho(\mathcal{Q}(\mathbf{Y})) \). Subsequently, a lower bound on \(\| c \| \) yields a lower bound on \(\| \hat{c} \| \) because a subspace embedding preserves vector norms uniformly on a low-rank subspace.

Proof sketch of Lemma 16. The proof is essentially similar to the one for Lemma 12. The major difference is that under the noisy setting a dual direction \(\nu \) no longer falls exactly onto an underlying subspace \(\mathcal{U}^{(\ell)} \) and one needs to upper bound the norm of the orthogonal component \(\mathcal{P}_{\mathcal{U}^{(\ell)}} \nu \). This can be done using, for example, Eq. (5.16) in (Wang & Xu, 2013), which states that

\[
\| \mathcal{P}_{\mathcal{U}^{(\ell)}} \nu \|_2 \leq \lambda \eta (1/\rho_{\ell} + 1) \leq 2\lambda \eta / \rho_{\ell}.
\]

6. Related work

Heckel et al. analyzed both SSC and Threshold-based Subspace Clustering (TSC) on projected data (Heckel et al., 2014). The key difference is that the analysis in (Heckel et al., 2014) only applies to noiseless data and is limited to the semi-random model introduced in (Soltanolkotabi et al., 2012), which is arguably less practical. In contrast, our analysis generalizes to fully deterministic settings. It also applies to a broader class of dimensionality reduction methods and can handle data corrupted by noise.

Arpit et al. proposed a novel dimensionality reduction algorithm to preserve independent subspace structures (Arpit et al., 2014). They showed that by using \(p = 2k \) one can preserve the independence structure among subspaces. However, their analysis only applies to noiseless and independent subspaces. Furthermore, in our analysis the target dimension \(p \) required depends on the intrinsic subspace rank \(r \) instead of \(k \). Usually \(r \) is quite small in practice (Elhamifar & Vidal, 2013; Basri & Jacobs, 2003).

Another relevant line of research is high-rank matrix completion. In (Eriksson et al., 2012) the authors proposed a neighborhood selection based algorithm to solve multiple matrix completion problems. Although their method does recover points lying on the same subspace, the completion problem is quite different from subspace clustering as we discuss in Section 8. Furthermore, though their sampling scheme is more practical than ours (does not need sampling entire rows), an exponential number of data points are required. In contrast, in our analysis \(N \) only needs to scale polynomially with \(r \) if a stochastic model is imposed.

7. Numerical results

In this section we present numerical results that validate our theoretical findings and compare Lasso SSC with TSC (Heckel & Bolcskei, 2013) and LRR (Liu et al., 2013). The Lasso SSC algorithm is implemented using augmented Lagrangian method (ALM) when the regularization coefficient \(\lambda \) is fixed and known. We also implement Lasso SSC using a solution path algorithm (Tibshirani & Taylor, 2011) to tune \(\lambda \) separately for each data point. The LRR implementation is obtained from (Liu, 2013). Random Gaussian projection is used for all experiments. All algorithms are implemented in Matlab.

We evaluate clustering results by both clustering error and the relative violation of SEP. Clustering error is defined as the percentage of mis-clustered data points up to permutation. The relative violation of SEP characterizes how much the obtained similarity matrix \(C \) violates the self-expressiveness property. It was introduced in (Wang & Xu, 2013) and defined as

\[
\text{RelViolation}(C, M) = \frac{\sum_{(i,j) \notin M} |C_{ij}|}{\sum_{(i,j) \in M} |C_{ij}|},
\]

where \((i, j) \in M\) means \(x_i \) and \(x_j \) belong to the same cluster and vice versa.
A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

−5 −4 −3 −2 ... is required to complete a low-rank matrix with coherent column space (Krishnamurthy & Singh, 2014; Chen et al., 2013).

![Figure 3. Relative SEP violation (left) and clustering error for Lasso SSC on the Hopkins-155 dataset. The rightmost two columns in the left figure indicate trivial solutions. White indicates good similarity graph or clustering and black indicates poor similarity graph or clustering.](image)

![Figure 4. Comparison of clustering error (left) and relative SEP violation (right) for Lasso SSC, TSC and LRR on the Hopkins-155 dataset.](image)

7.1. Face Clustering

We start by evaluating the performance of Lasso SSC with random Gaussian projection on the extended Yale B face recognition dataset (Lee et al., 2005). We also compare with TSC, which is known to be robust to random projection (Heckel et al., 2014), and LRR. We preprocess the dataset by projecting face images for each individual onto a 9D affine subspace via PCA. Such preprocess steps were justified in (Basri & Jacobs, 2003) and also adopted in (Wang & Xu, 2013).

In Figure 1 we report the relative SEP violation for both Lasso SSC and TSC. Results are averaged for 10 random projections. We use q to denote the number of solution-path steps taken for each self-regression solution c_{ij}. Figure 1 shows that as λ decreases the relative SEP violation for Lasso SSC increases, which is predicted by our theoretical analysis. In addition, Figure 1 shows that the relative SEP violation for TSC is rather high compared to Lasso SSC. This is because the analysis for TSC heavily relies upon the semi-random model assumption, which rarely holds true in real-world applications.

Figure 2 shows the clustering accuracy of Lasso SSC, TSC and LRR. For this experiment we randomly selected 5 and 10 individuals from the dataset and report the average clustering error. The total data dimension is $5 \times 9 = 45$ for 5 individuals and $10 \times 9 = 90$ for 10 individuals. We can see that Lasso SSC significantly outperforms TSC under all p and q settings. It outperforms LRR when the projection dimension p is small under which LRR performance guarantees fail because subspaces are no longer independent.

7.2. Motion segmentation

We evaluate the performance of Lasso SSC with random projection for motion trajectory segmentation on the Hopkins-155 dataset (Tron & Vidal, 2007). Figure 3 shows the mean relative SEP violation and clustering error for SSC across all 158 video sequences in the dataset. The ambient data dimension ranges from 112 to 240. We can see that the relative SEP violation goes up when λ or the projection dimension p decreases. The clustering accuracy acts accordingly, with the exception of very large λ values under which we get very sparse self-regression vectors and hence connectivity of the similarity graph is affected.

In Figure 4 we report the clustering error and relative SEP violation for Lasso SSC, TSC and LRR on Hopkins-155. Both clustering error and relative SEP violation are averaged across all 158 sequences. Unlike the face recognition task, we set specific λ values instead of solution-path steps (q) for Lasso SSC because the former works better on the Hopkins-155 dataset. Figure 4 shows that Lasso SSC outperforms TSC and LRR under various regularization and projection dimension settings, which is consistent with previous experimental results (Elhamifar & Vidal, 2013).

8. Discussion

We discuss on the relationship between subspace clustering and high-rank matrix completion. In general, if one can complete a high-rank matrix then exact subspace clustering algorithms can be applied to obtain subspace clusters. On the other hand, once the perfect subspace clustering result is available, we can run separate low-rank matrix completion for each cluster to complete the entire matrix.

However, we remark that under the missing data setting subspace clustering is easier than matrix completion in two ways. First, most matrix completion algorithms require both row and column spaces of a matrix to be incoherent (Recht, 2011), while for subspace clustering we only assume incoherence on the column space. Furthermore, the uniform sampling scheme proposed in Section 3 is a passive sampling scheme because the probability of observing a particular matrix entry is fixed a priori. Although it suffices for the purpose of subspace clustering, it is shown in (Krishnamurthy & Singh, 2014) that any passive sampling scheme fails to complete a column space coherent matrix unless it observes a constant fraction of matrix entries. Adaptive sampling is required to complete a low-rank matrix with coherent column space (Krishnamurthy & Singh, 2014; Chen et al., 2013).
A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Acknowledgement

This research is supported in part by grants NSF CAREER IIS-1252412 and AFOSR YIP FA9550-14-1-0285. Yu-Xiang Wang was supported by NSF Award BCS-0941518 to CMU Statistics and Singapore National Research Foundation under its International Research Centre @ Singapore Funding Initiative and administered by the IDM Programme Office.

References

Balzano, Laura, Recht, Benjamin, and Nowak, Robert. High-dimensional matched subspace detection when data are missing. In ISIT, 2010.

