Abstract

In this paper we show that on-line algorithms for classification and regression can be naturally used to obtain hypotheses with good data-dependent tail bounds on their risk. Our results are proven without requiring complicated concentration-of-measure arguments and they hold for arbitrary on-line learning algorithms. Furthermore, when applied to concrete on-line algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.

1 Introduction

One of the main contributions of the recent statistical theories for regression and classification problems [21, 19] is the derivation of functionals of certain empirical quantities (such as the sample error or the sample margin) that provide uniform risk bounds for all the hypotheses in a certain class. This approach has some known weak points. First, obtaining tight uniform risk bounds in terms of meaningful empirical quantities is generally a difficult task. Second, searching for the hypothesis minimizing a given empirical functional is often computationally expensive and, furthermore, the minimizing algorithm is seldom incremental (if new data is added to the training set then the algorithm needs be run again from scratch).

On-line learning algorithms, such as the Perceptron algorithm [17], the Winnow algorithm [14], and their many variants [16, 6, 13, 10, 2, 9], are general methods for solving classification and regression problems that can be used in a fully incremental fashion. That is, they need (in most cases) a short time to process each new training example and adjust their current hypothesis. While the behavior of these algorithms is well understood in the so-called mistake bound model [14], where no assumptions are made on the way the training sequence is generated, there are fewer results concerning how to use these algorithms to obtain hypotheses with small statistical risk.

Littlestone [15] proposed a method for obtaining small risk hypotheses from a run of an arbitrary on-line algorithm by using a cross validation set to test each one of the hypotheses generated during the run. This method does not require any convergence property of the on-line algorithm and provides risk tail bounds that are sharper than those obtainable choosing, for instance, the hypothesis in the run that survived the longest.
and others [11, 6, 8] showed that, without using any cross-validation sets, one can obtain expected risk bounds (as opposed to the more informative tail bounds) for a hypothesis randomly drawn among those generated during the run.

In this paper we prove, via refinements and extensions of the previous analyses, that online algorithms naturally lead to good data-dependent tail bounds without employing the complicated concentration-of-measure machinery needed by other frameworks [19]. In particular we show how to obtain, from an arbitrary on-line algorithm, hypotheses whose risk is close to $\frac{m}{t}$ with high probability (Theorems 2 and 3), where t is the amount of training data and m is a data-dependent quantity measuring the cumulative loss of the on-line algorithm on the actual training data. When applied to concrete algorithms, the loss bound m translates into a function of meaningful data-dependent quantities. For classification problems, the mistake bound for the p-norm Perceptron algorithm yields a tail risk bound in terms of the empirical distribution of the margins — see (4). For regression problems, the square loss bound for ridge regression yields a tail risk bound in terms of the eigenvalues of the Gram matrix — see (5).

2 Preliminaries and notation

Let \mathcal{X}, \mathcal{Y} be arbitrary sets and $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$. An example is a pair (x, y), where x is an instance belonging to \mathcal{X} and $y \in \mathcal{Y}$ is the label associated with x. Random variables will be denoted in upper case and their realizations will be in lower case. We let Z be the pair of random variables (X, Y), where X and Y take values in \mathcal{X} and \mathcal{Y}, respectively. Throughout the paper, we assume that data are generated i.i.d. according to an unknown probability distribution over \mathcal{Z}. All probabilities and expectations will be understood with respect to this underlying distribution. We use the short-hand Z^t to denote the vector-valued random variable (Z_1, \ldots, Z_t).

A hypothesis h is any (measurable) mapping from instances $x \in \mathcal{X}$ to predictions $h(x) \in \mathcal{D}$, where \mathcal{D} is a given decision space. The risk of h is defined by $\text{err}(h) = \mathbb{E}[\ell(h(X), Y)]$, where $\ell : \mathcal{D} \times \mathcal{Y} \to \mathbb{R}$ is a nonnegative loss function. Unless otherwise specified, we will assume that ℓ takes values in $[0, L]$ for some known $0 < L < \infty$. The on-line algorithms we investigate are defined within a well-known mathematical model, which is a generalization of a learning model introduced by Littlestone [14] and Angluin [1]. Let a training sequence $z^t = ((x_1, y_1), \ldots, (x_t, y_t)) \in (\mathcal{X} \times \mathcal{Y})^t$ be fixed. In this learning model, an on-line algorithm processes the examples in z^t one at a time in trials, generating a sequence of hypotheses h_0, h_1, \ldots, h_t. At the beginning of the i-th trial, the algorithm receives the instance x_i and uses its current hypothesis h_{i-1} to compute a prediction $h_{i-1}(x_i) \in \mathcal{D}$ for the label y_i associated with x_i. Then, the true value of the label y_i is disclosed and the algorithm suffers a loss $\ell(h_{i-1}(x_i), y_i)$, measuring how bad is the prediction $h_{i-1}(x_i)$ for the label y_i. Before the next trial begins, the algorithm generates a new hypothesis h_i which may or may not be equal to h_{i-1}. We measure the algorithm’s performance on z^t by its cumulative loss

$$m(z^t) = \sum_{i=1}^{t} \ell(h_{i-1}(x_i), y_i).$$

In our analysis, we will write M and H_0, \ldots, H_t when we want to stress the fact that the cumulative loss and the hypotheses of the on-line algorithm are functions of the random sample Z^t. In particular, throughout the paper H_0 will denote the (deterministic) initial hypothesis of an arbitrary on-line algorithm and, for each $1 \leq i \leq t$, H_i will be a random variable denoting the i-th hypothesis of the on-line algorithm and such that the value of $H_i(Z_1, \ldots, Z_t)$ does not change upon changes in the values of Z_{i+1}, \ldots, Z_t.

Our goal is to relate the risk of the hypotheses produced by an on-line algorithm running on an i.i.d. sequence Z^t to the cumulative loss $M(Z^t)$ of the algorithm on that sequence.
The cumulative loss $M(Z^t)$ will be our key empirical (data-dependent) quantity. Via our analysis we will obtain bounds of the form
\[
\Pr\left(\frac{1}{t} \sum_{i=1}^{t} \text{er}(f(H_0, \ldots, H_t)) \geq \frac{M(Z^t)}{t} + c \sqrt{\frac{1}{t} \ln \frac{1}{\delta}} \right) \leq \delta,
\]
where $f(H_0, \ldots, H_t)$ is a specific function of the sequence of hypotheses H_0, \ldots, H_t produced by the algorithm, and c is a suitable positive constant. We will see that for specific on-line algorithms the ratio $M(Z^t)/t$ can be further bounded in terms of meaningful empirical quantities.

Our method centers on the following simple concentration lemma about bounded losses.

Lemma 1 Let ℓ be an arbitrary bounded loss satisfying $0 \leq \ell \leq L$. Let an arbitrary on-line algorithm output (not necessarily distinct) hypotheses H_0, \ldots, H_t when it is run on Z^t. Then for any $0 < \delta < 1$ we have
\[
\Pr\left(\frac{1}{t} \sum_{i=1}^{t} \text{er}(H_{i-1}) \geq \frac{M}{t} + L \sqrt{\frac{2}{t} \ln \frac{1}{\delta}} \right) \leq \delta.
\]

Proof. For each $i = 1, \ldots, t$, set $V_{i-1} = \text{er}(H_{i-1}) - \ell(H_{i-1}(X_i), Y_i)$. We have
\[
\frac{1}{t} \sum_{i=1}^{t} V_{i-1} = \frac{1}{t} \sum_{i=1}^{t} \text{er}(H_{i-1}) - \frac{M}{t}.
\]
Furthermore, $-L \leq V_{i-1} \leq L$, since ℓ takes values in $[0, L]$. Also,
\[
\mathbb{E}_i[V_{i-1} | \mathcal{F}_{i-1}] = \text{er}(h_{i-1}) - \mathbb{E}_i[\ell(h_{i-1}(X_i), Y_i) | \mathcal{F}_{i-1}], = 0
\]
where \mathcal{F}_{i-1} denotes the σ-algebra generated by Z_1, \ldots, Z_{i-1}. A direct application of the Hoeffding-Azuma inequality [3] to the bounded random variables V_0, \ldots, V_{i-1} proves the lemma. \hfill \square

3 Concentration for convex losses

In this section we investigate the risk of the average hypothesis
\[
\overline{h} = \frac{1}{t} \sum_{i=1}^{t} h_{i-1},
\]
where h_0, h_1, \ldots, h_t are the hypotheses generated by some on-line algorithm run on t training examples.\(^1\) The average hypothesis generates valid predictions whenever the decision space D is convex.

Theorem 2 Let D be convex and $\ell : D \times Y \to [0, L]$ be convex in the first argument. Let an arbitrary on-line algorithm for ℓ output (not necessarily distinct) hypotheses H_0, \ldots, H_t when the algorithm is run on Z^t. Then for any $0 < \delta < 1$ the following holds
\[
\Pr\left(\text{er}(\overline{h}) \geq \frac{M}{t} + L \sqrt{\frac{2}{t} \ln \frac{1}{\delta}} \right) \leq \delta.
\]

\(^1\)Notice that the last hypothesis h_t is not used in this average.
Proof. Since \(\ell \) is convex in the first argument, by Jensen’s inequality we have
\[
\frac{1}{t} \sum_{i=1}^{t} \ell (h_{t-i-1}(x), y) \leq \frac{1}{t} \sum_{i=1}^{t} \ell (h_{t-i}(x), y).
\]
Taking expectation with respect to \((X, Y)\) yields
\[
er(h) \leq \frac{1}{t} \sum_{i=1}^{t} \er(h_{t-i+1}).
\]
Using the last inequality along with Lemma 1 yields the thesis. \(\square \)

This theorem, which can be viewed as the tail bound version of the expected bound in [11], implies that the risk of the average hypothesis is close to \(m(z^t)/t \) for “most” samples \(z^t \). On the other hand, note that it is unlikely that \(\sum_{i=1}^{t} \er(h_{t-i+1})/t \) concentrates around \(\mathbb{E}[M]/t \), at least without taking strong assumptions on the underlying on-line algorithm.

An application of Theorem 2 will be shown in Section 5. Here we just note that by applying this theorem to the Weighted Majority algorithm [16], we can prove a version of [5, Theorem 4] for the absolute loss without resorting to sophisticated concentration inequalities (details in the full paper).

4 Penalized risk estimation for general losses

If the loss function \(\ell \) is nonconvex (such as the 0-1 loss) then the risk of the average hypothesis cannot be bounded in the way shown in the previous section. However, the risk of the best hypothesis, among those generated by the on-line algorithm, cannot be higher than the average risk of the same hypotheses. Hence, Lemma 1 immediately tells us that, under no conditions on the loss function other than boundedness, for most samples \(z^t \) at least one of the hypotheses generated has risk close to \(m(z^t)/t \). In this section we give a technique (Lemma 4) that, using a penalized risk estimate, finds with high probability such a hypothesis. The argument used is a refinement of Littlestone’s method [15]. Unlike Littlestone’s, our technique does not require a cross validation set. Therefore we are able to obtain bounds on the risk whose main term is \(m(z^t)/t \), where \(t \) is the size of the whole set of examples available to the learning algorithm (i.e., training set plus validation set in Littlestone’s paper). Similar observations are made in [4], though the analysis there does actually refer only to randomized hypotheses with 0-1 loss (namely, to absolute loss).

Let us define the penalized risk estimate of hypothesis \(h_i \) by
\[
\frac{m_i}{t-i} + c_\delta(t-i),
\]
where \(t-i \) is the length of the suffix \(z_{t+1}, \ldots, z_t \) of the training sequence that the on-line algorithm had not seen yet when \(h_i \) was generated, \(m_i \) is the cumulative loss of \(h_i \) on that suffix, and
\[
c_\delta(x) = \sqrt{\frac{1}{2x} \ln \frac{t(t+1)}{\delta}}.
\]
Our algorithm chooses the hypothesis \(\hat{h} = h_{i^*} \), where
\[
i^* = \arg\min_{0 \leq i \leq t-1} \left(\frac{m_i}{t-i} + c_\delta(t-i) \right).
\]

For the sake of simplicity, we will restrict to losses \(\ell \) with range \([0,1]\). However, it should be clear that losses taking values in arbitrary bounded real interval can be handled using techniques similar to those shown in Section 3. We prove the following result.

Theorem 3 Let an arbitrary on-line algorithm output (not necessarily distinct) hypotheses \(H_0, \ldots, H_t \) when it is run on \(Z^t \). Then, for any \(0 < \delta \leq 1 \), the hypothesis \(\hat{H} \) chosen using the penalized risk estimate based on \(c_\delta \) satisfies
\[
\mathbb{P} \left(\er(\hat{H}) > \frac{M}{t} + 5 \sqrt{\frac{1}{t} \ln \frac{2(t+1)}{\delta}} \right) \leq \delta.
\]
The proof of this theorem is based on the two following technical lemmas.

Lemma 4 Let an arbitrary on-line algorithm output (not necessarily distinct) hypotheses \(H_0, \ldots, H_t \) when it is run on \(Z^t \). Then for any \(0 < \delta < 1 \) the following holds:

\[
\Pr \left(\text{er}(\hat{H}) > \min_{0 \leq i \leq t-1} \left(\text{er}(H_i) + 2c_\delta(t-i) \right) \right) \leq \delta.
\]

Proof. Let \(I^* = \arg\min_{0 \leq i \leq t-1} \left(\text{er}(H_i) + 2c_\delta(t-i) \right) \). Let further \(H^* = H_{I^*} \), \(M^* = M_{I^*} \), and set for brevity

\[
\hat{e}_i = \frac{M_i}{t-i},
\]

\[
\hat{e}^* = \frac{M^*}{t-I^*}.
\]

For any fixed \(\varepsilon > 0 \) we have

\[
\Pr(\text{er}(\hat{H}) > \text{er}(H^*) + \varepsilon)
\]

\[
\leq \sum_{i=0}^{t-1} \Pr(\hat{e}_i + c_\delta(t-i) \leq \hat{e}^* + c_\delta(t-I^*) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon). \tag{1}
\]

Now, if

\[
\hat{e}_i + c_\delta(t-i) \leq \hat{e}^* + c_\delta(t-I^*)
\]

holds then either

\[
\hat{e}_i \leq \text{er}(H_i) - c_\delta(t-i)
\]

or

\[
\hat{e}^* > \text{er}(H^*) + c_\delta(t-I^*)
\]

hold. Hence for any fixed \(i \) we can write

\[
\Pr(\hat{e}_i + c_\delta(t-i) \leq \hat{e}^* + c_\delta(t-I^*) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon)
\]

\[
\leq \Pr(\hat{e}_i \leq \text{er}(H_i) - c_\delta(t-i) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon)
\]

\[+ \Pr(\hat{e}^* > \text{er}(H^*) + c_\delta(t-I^*) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon)
\]

\[+ \Pr(\text{er}(H_i) - \text{er}(H^*) < 2c_\delta(t-I^*) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon)
\]

\[
\leq \Pr(\hat{e}_i \leq \text{er}(H_i) - c_\delta(t-i)) + \Pr(\hat{e}^* > \text{er}(H^*) + c_\delta(t-I^*)) \tag{2}
\]

\[+ \Pr(\text{er}(H_i) - \text{er}(H^*) < 2c_\delta(t-I^*) \land \text{er}(H_i) > \text{er}(H^*) + \varepsilon). \tag{3}
\]

Probability (3) is zero if \(\varepsilon = 2c_\delta(t-I^*) \). Hence, plugging (2) into (1) we can write

\[
\Pr(\text{er}(\hat{H}) > \text{er}(H^*) + 2c_\delta(t-I^*))
\]

\[
\leq \sum_{i=0}^{t-1} \Pr(\hat{e}_i \leq \text{er}(H_i) - c_\delta(t-i)) + t \Pr(\hat{e}^* > \text{er}(H^*) + c_\delta(t-I^*))
\]

\[
\leq \frac{\delta}{t+1} + t \sum_{i=0}^{t-1} \Pr(\hat{e}_i \geq \text{er}(H_i) + c_\delta(t-i))
\]

\[
\leq \frac{\delta}{t+1} + \frac{\delta t}{t+1}
\]

where in the last two inequalities we applied Chernoff-Hoeffding bounds. \(\square \)
Lemma 5 Let an arbitrary on-line algorithm output (not necessarily distinct) hypotheses H_0, \ldots, H_t when it is run on Z^t. Then for any $0 < \delta < 1$ the following holds:

$$\mathbb{P} \left(\min_{0 \leq i \leq t-1} (\epsilon(H_i) + 2c_\delta(t - i)) \geq \frac{M}{t} + \sqrt{\frac{2}{t} \ln \frac{1}{\delta}} + 4 \sqrt{\frac{2}{t} \ln \frac{t + 1}{\delta}} \right) \leq \delta.$$

Proof. We have

$$\min_{0 \leq i \leq t-1} (\epsilon(h_i) + 2c_\delta(t - i)) \leq \frac{1}{t} \sum_{i=0}^{t-1} (\epsilon(h_i) + 2c_\delta(t - i))$$

$$= \frac{1}{t} \sum_{i=0}^{t-1} \epsilon(h_i) + \frac{2}{t} \sum_{i=0}^{t-1} \sqrt{\frac{1}{2(t - i)} \ln \frac{t(t + 1)}{\delta}}$$

$$\leq \frac{1}{t} \sum_{i=0}^{t-1} \epsilon(h_i) + \frac{2}{t} \sum_{i=0}^{t-1} \sqrt{\frac{1}{t - i} \ln \frac{t + 1}{\delta}}$$

$$\leq \frac{1}{t} \sum_{i=0}^{t-1} \epsilon(h_i) + 4 \sqrt{\frac{1}{t} \ln \frac{t + 1}{\delta}},$$

where the last inequality follows from $\sum_{i=1}^{t} \sqrt{1/t} \leq 2 \sqrt{t}$. Therefore

$$\mathbb{P} \left(\min_{0 \leq i \leq t-1} (\epsilon(H_i) + 2c_\delta(t - i)) \geq \frac{M}{t} + \sqrt{\frac{2}{t} \ln \frac{1}{\delta}} + 4 \sqrt{\frac{1}{t} \ln \frac{t + 1}{\delta}} \right)$$

$$\leq \mathbb{P} \left(\frac{1}{t} \sum_{i=0}^{t-1} \epsilon(H_i) \geq \frac{M}{t} + \sqrt{\frac{2}{t} \ln \frac{1}{\delta}} \right)$$

$$\leq \delta,$$

by Lemma 1 (with $L = 1$). \(\Box \)

Proof (of Theorem 3). The proof follows by combining Lemma 4 and Lemma 5, and by overapproximating the square root terms therein. \(\Box \)

5 Applications

For the sake of concreteness we now sketch two generalization bounds which can be obtained through a direct application of our techniques.

The p-norm Perceptron algorithm [10, 9] is a linear threshold algorithm which keeps in the i-th trial a weight vector $\tilde{\theta}_{i-1} \in \mathbb{R}^n$. On instance $x_i \in X = \{x \in \mathbb{R}^n : ||x||_p \leq 1\}$, the algorithm predicts by $h_{i-1}(x_i) = \text{sign}(g(\tilde{\theta}_{i-1}) \cdot x_i) \in \{-1, +1\}$, where $g(\theta) = \nabla \frac{1}{2} \|\theta\|_p^2$ and $p \geq 2$. If the algorithm’s prediction is wrong (i.e., if $h_{i-1}(x_i) \neq y_i$) then the algorithm performs the weight update $\theta_i \leftarrow \theta_{i-1} + y_i x_i$. Notice that $p = 2$ yields the classical Perceptron algorithm [17]. On the other hand, $p = \Theta(\log n)$ gets an algorithm which performs like a multiplicative algorithm, such as the Normalized Winnow algorithm [10]. Applying Theorem 3 to the bound on the number M of mistakes for the p-norm Perceptron algorithm shown in [9], we immediately obtain that, with probability at least $1 - \delta$ with respect to the draw of the training sample Z^t, the risk $\epsilon(H)$ of the penalized estimator \hat{H} is at most

$$\frac{1}{t} D_\gamma(a, Z^t) + \frac{(p - 1)}{\gamma^2} + \frac{1}{\gamma} \sqrt{(p - 1) D_\gamma(a, Z^t)} + 5 \sqrt{\frac{1}{t} \ln \frac{2(t + 1)}{\delta}}$$

(4)
for any \(\gamma > 0 \) and for any \(\mathbf{u} \) such that \(\| \mathbf{u} \|_p/(p-1) \leq 1 \). The margin-based quantity \(D_\gamma (u, z^t) = \sum_{i=1}^{d} \max \{ 0, 1 - y_i u \cdot x_i / \gamma \} \) is called soft margin in [20] and accounts for the distribution of margin values achieved by the examples in \(z^t \) with respect to hyperplane \(\mathbf{u} \). Traditional data-dependent bounds using uniform convergence methods (e.g., [19]) are typically expressed in terms of the sample margin \(\{ \{ i : y_i \mathbf{u} \cdot \mathbf{x}_i \leq \gamma \} \} / t \), i.e., in terms of the fraction of training points whose margin is at most \(\gamma \). The ratio \(D_\gamma (u, z^t) / t \) occurring in (4) has a similar flavor, though the two ratios are, in general, incomparable.

We remark that bound (4) does not have the extra log factors appearing in the analyses based on uniform convergence. Furthermore, it is significantly better than the bound in [20] whenever \(D_\gamma / t \) is constant, which typically occurs when the data sequence is not linearly separable.

As a second application, we consider the ridge regression algorithm [12] for square loss. Assume \(X = \mathbb{R}^n \) and \(Y = [-Y, +Y] \). This algorithm computes at the beginning of the \(i \)-th trial the vector \(\omega = \omega_{i-1} \) which minimizes \(\frac{1}{a} \| \omega \|_2^2 + \sum_{j=1}^{t} \frac{1}{2} (y_j - \omega \cdot x_j)^2 \), where \(a > 0 \). On instance \(\mathbf{x}_i \), the algorithm predicts with \(h_{i-1} (\mathbf{x}_i) = \kappa_Y (\mathbf{w}_{i-1} \cdot \mathbf{x}_i) \), where \(\kappa_Y \) is the "clipping" function \(\kappa_Y (\mathbf{x}) = Y \) if \(\mathbf{x} \geq Y \), \(\kappa_Y (\mathbf{x}) = -Y \) if \(\mathbf{x} \leq -Y \) and \(\kappa_Y (\mathbf{x}) = \mathbf{x} \) if \(-Y \leq \mathbf{x} \leq Y \). The losses \(\frac{1}{a} (y_j - h_{i-1} (\mathbf{x}_i))^2 \) are thus bounded by \(2Y^2 \). We can apply Theorem 2 to the bound on the cumulative loss \(M \) for ridge regression (see [22, 2]) and obtain that, with probability at least \(1 - \delta \) with respect to the draw of the training sample \(Z^t \), the risk \(\text{er} (H) \) of the average hypothesis estimator \(H \) is at most

\[
\frac{1}{t} \left(\frac{a}{2} \| \omega \|_2^2 + M (u, Z^t) + 2Y^2 \left(\ln \left| aI + \sum_{i=1}^{t} X_i X_i^\top \right| - n \ln a \right) \right) + 2Y^2 \sqrt{\frac{2}{t} \ln \frac{1}{\delta}}
\]

for any \(u \in \mathbb{R}^n \), where \(M (u, Z^t) = \sum_{i=1}^{t} \frac{1}{2} (Y_i - u \cdot X_i)^2 \), \(|A| \) denotes the determinant of matrix \(A \), \(I \) is the \(n \)-dimensional identity matrix and \(A^\top \) is the transpose of \(A \). Let us denote by \(X_i \) the matrix whose columns are the data vectors \(x_i, i = 1, \ldots, t \). Then simple linear algebra shows that

\[
\ln |aI + \sum_{i=1}^{t} X_i X_i^\top| - n \ln a = \ln |aI + X_i X_i^\top| - n \ln a = \sum_{i=1}^{n} \ln (1 + \lambda_i / a),
\]

where the \(\lambda_i \)'s are the eigenvalues of \(X_i X_i^\top \). The nonzero eigenvalues of \(X_i X_i^\top \) are the same as the nonzero eigenvalues of the Gram matrix \(X_i X_i^\top \). Risk bounds in terms of the eigenvalues of the Gram matrix were also derived in [23]; we defer to the full paper a comparison between these results and ours. Finally, our bound applies also to kernel ridge regression [18] by replacing the eigenvalues of \(X_i X_i^\top \) with the eigenvalues of the kernel Gram matrix \(K(\mathbf{x}_i, \mathbf{x}_j), 1 \leq i, j \leq t \), where \(K \) is the kernel being considered.

References

\(^{2}\)Using a slightly different linear regression algorithm, Forster and Warmuth [7] have proven a sharper bound on the expected relative loss. In particular, they have exhibited an algorithm computing hypothesis \(H = H (Z^t) \) such that in expectation (over \(Z^t \)) the relative risk \(\text{er} (H) - \min_{H \in H^n} \mathbb{E} [\ell (u \cdot X, Y)] \) is bounded by \(n Y^2 / t \).

