Search Machine Learning Repository: Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks
Authors: Creighton Heaukulani and Zoubin Ghahramani
Conference: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
Year: 2013
Pages: 275-283
Abstract: Current Bayesian models for dynamic social network data have focused on modelling the influence of evolving unobserved structure on observed social interactions. However, an understanding of how observed social relationships from the past affect future unobserved structure in the network has been neglected. In this paper, we introduce a new probabilistic model for capturing this phenomenon, which we call latent feature propagation, in social networks. We demonstrate our model's capability for inferring such latent structure in varying types of social network datasets, and experimental studies show this structure achieves higher predictive performance on link prediction and forecasting tasks.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).