Search Machine Learning Repository: Learning from Human-Generated Lists
Authors: Kwang-sung Jun, Jerry Zhu, Burr Settles and Timothy Rogers
Conference: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
Year: 2013
Pages: 181-189
Abstract: Human-generated lists are a form of non-iid data with important applications in machine learning and cognitive psychology. We propose a generative model - sampling with reduced replacement (SWIRL) - for such lists. We discuss SWIRL's relation to standard sampling paradigms, provide the maximum likelihood estimate for learning, and demonstrate its value with two real-world applications: (i) In a ""feature volunteering"" task where non-experts spontaneously generate feature=>label pairs for text classification, SWIRL improves the accuracy of state-of-the-art feature-learning frameworks. (ii) In a ""verbal fluency"" task where brain-damaged patients generate word lists when prompted with a category, SWIRL parameters align well with existing psychological theories, and our model can classify healthy people vs. patients from the lists they generate.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).