Search Machine Learning Repository: Stable Coactive Learning via Perturbation
Authors: Karthik Raman, Thorsten Joachims, Pannaga Shivaswamy and Tobias Schnabel
Conference: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
Year: 2013
Pages: 837-845
Abstract: Coactive Learning is a model of interaction between a learning system (e.g. search engine) and its human users, wherein the system learns from (typically implicit) user feedback during operational use. User feedback takes the form of preferences, and recent work has introduced online algorithms that learn from this weak feedback. However, we show that these algorithms can be unstable and ineffective in real-world settings where biases and noise in the feedback are significant. In this paper, we propose the first coactive learning algorithm that can learn robustly despite bias and noise. In particular, we explore how presenting users with slightly perturbed objects (e.g., rankings) can stabilize the learning process. We theoretically validate the algorithm by proving bounds on the average regret. We also provide extensive empirical evidence on benchmarks and from a live search engine user study, showing that the new algorithm substantially outperforms existing methods.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).