Search Machine Learning Repository: Computation-Risk Tradeoffs for Covariance-Thresholded Regression
Authors: Dinah Shender and John Lafferty
Conference: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
Year: 2013
Pages: 756-764
Abstract: We present a family of linear regression estimators that provides a fine-grained tradeoff between statistical accuracy and computational efficiency. The estimators are based on hard thresholding of the sample covariance matrix entries together with l2-regularizion(ridge regression). We analyze the predictive risk of this family of estimators as a function of the threshold and regularization parameter. With appropriate parameter choices, the estimate is the solution to a sparse, diagonally dominant linear system, solvable in near-linear time. Our analysis shows how the risk varies with the sparsity and regularization level, thus establishing a statistical estimation setting for which there is an explicit, smooth tradeoff between risk and computation. Simulations are provided to support the theoretical analyses.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).