Search Machine Learning Repository: Temporal Difference Methods for the Variance of the Reward To Go
Authors: Aviv Tamar, Dotan D. Castro and Shie Mannor
Conference: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
Year: 2013
Pages: 495-503
Abstract: In this paper we extend temporal difference policy evaluation algorithms to performance criteria that include the variance of the cumulative reward. Such criteria are useful for risk management, and are important in domains such as finance and process control. We propose variants of both TD(0) and LSTD($\lambda$) with linear function approximation, prove their convergence, and demonstrate their utility in a 4-dimensional continuous state space problem.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).