Search Machine Learning Repository:
**Thompson Sampling for Complex Online Problems**

**Authors:** *Aditya Gopalan*, *Shie Mannor* and *Yishay Mansour*

**Conference:** Proceedings of the 31st International Conference on Machine Learning (ICML-14)

**Year:** 2014

**Pages:** 100-108

**Abstract:** We consider stochastic multi-armed bandit problems with complex actions over a set of basic arms, where the decision maker plays a complex action rather than a basic arm in each round. The reward of the complex action is some function of the basic arms' rewards, and the feedback observed may not necessarily be the reward per-arm. For instance, when the complex actions are subsets of the arms, we may only observe the maximum reward over the chosen subset. Thus, feedback across complex actions may be coupled due to the nature of the reward function. We prove a frequentist regret bound for Thompson sampling in a very general setting involving parameter, action and observation spaces and a likelihood function over them. The bound holds for discretely-supported priors over the parameter space and without additional structural properties such as closed-form posteriors, conjugate prior structure or independence across arms. The regret bound scales logarithmically with time but, more importantly, with an improved constant that non-trivially captures the coupling across complex actions due to the structure of the rewards. As applications, we derive improved regret bounds for classes of complex bandit problems involving selecting subsets of arms, including the first nontrivial regret bounds for nonlinear MAX reward feedback from subsets. Using particle filters for computing posterior distributions which lack an explicit closed-form, we present numerical results for the performance of Thompson sampling for subset-selection and job scheduling problems.

[pdf] [BibTeX]

authors venues years

Suggest Changes to this paper.

Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).