Search Machine Learning Repository:
**Coordinate-descent for learning orthogonal matrices through Givens rotations**

**Authors:** *Uri Shalit* and *Gal Chechik*

**Conference:** Proceedings of the 31st International Conference on Machine Learning (ICML-14)

**Year:** 2014

**Pages:** 548-556

**Abstract:** Optimizing over the set of orthogonal matrices is a central component in problems like sparse-PCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel of coordinate-descent in Euclidean spaces. It is based on {\em Givens-rotations}, a fast-to-compute operation that affects a small number of entries in the learned matrix, and preserves orthogonality. We show two applications of this approach: an algorithm for tensor decompositions used in learning mixture models, and an algorithm for sparse-PCA. We study the parameter regime where a Givens rotation approach converges faster and achieves a superior model on a genome-wide brain-wide mRNA expression dataset.

[pdf] [BibTeX]

authors venues years

Suggest Changes to this paper.

Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).