Search Machine Learning Repository: Gaussian Process Optimization with Mutual Information
Authors: Emile Contal, Vianney Perchet and Nicolas Vayatis
Conference: Proceedings of the 31st International Conference on Machine Learning (ICML-14)
Year: 2014
Pages: 253-261
Abstract: In this paper, we analyze a generic algorithm scheme for sequential global optimization using Gaussian processes. The upper bounds we derive on the cumulative regret for this generic algorithm improve by an exponential factor the previously known bounds for algorithms like GP-UCB. We also introduce the novel Gaussian Process Mutual Information algorithm (GP-MI), which significantly improves further these upper bounds for the cumulative regret. We confirm the efficiency of this algorithm on synthetic and real tasks against the natural competitor, GP-UCB, and also the Expected Improvement heuristic.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).