Search Machine Learning Repository: Multiple Testing under Dependence via Semiparametric Graphical Models
Authors: Jie Liu, Chunming Zhang, Elizabeth Burnside and David Page
Conference: Proceedings of the 31st International Conference on Machine Learning (ICML-14)
Year: 2014
Pages: 955-963
Abstract: It has been shown that graphical models can be used to leverage the dependence in large-scale multiple testing problems with significantly improved performance (Sun & Cai, 2009; Liu et al., 2012). These graphical models are fully parametric and require that we know the parameterization of f1, the density function of the test statistic under the alternative hypothesis. However in practice, f1 is often heterogeneous, and cannot be estimated with a simple parametric distribution. We propose a novel semiparametric approach for multiple testing under dependence, which estimates f1 adaptively. This semiparametric approach exactly generalizes the local FDR procedure (Efron et al., 2001) and connects with the BH procedure (Benjamini & Hochberg, 1995). A variety of simulations show that our semiparametric approach outperforms classical procedures which assume independence and the parametric approaches which capture dependence.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).