Search Machine Learning Repository: Scalable and Robust Bayesian Inference via the Median Posterior
Authors: Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin and David Dunson
Conference: Proceedings of the 31st International Conference on Machine Learning (ICML-14)
Year: 2014
Pages: 1656-1664
Abstract: Many Bayesian learning methods for massive data benefit from working with small subsets of observations. In particular, significant progress has been made in scalable Bayesian learning via stochastic approximation. However, Bayesian learning methods in distributed computing environments are often problem- or distribution-specific and use ad hoc techniques. We propose a novel general approach to Bayesian inference that is scalable and robust to corruption in the data. Our technique is based on the idea of splitting the data into several non-overlapping subgroups, evaluating the posterior distribution given each independent subgroup, and then combining the results. The main novelty is the proposed aggregation step which is based on finding the geometric median of posterior distributions. We present both theoretical and numerical results illustrating the advantages of our approach.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).