Search Machine Learning Repository:
**Optimal Mean Robust Principal Component Analysis**

**Authors:** *Feiping Nie*, *Jianjun Yuan* and *Heng Huang*

**Conference:** Proceedings of the 31st International Conference on Machine Learning (ICML-14)

**Year:** 2014

**Pages:** 1062-1070

**Abstract:** Dimensionality reduction techniques extract low-dimensional structure from high-dimensional data and are widespread in machine learning research. In practice, due to lacking labeled data, the unsupervised dimensionality reduction algorithms are more desired. Among them, Principal Component Analysis (PCA) is the most widely used approach. In recent research, several robust PCA algorithms were presented to enhance the robustness of PCA model. However, all existing robust PCA methods incorrectly center the data using the L2-norm distance to calculate the mean, which actually is not the optimal mean due to the L1-norm used in the objective functions. It is non-trivial to remove the optimal mean in the robust PCA, because of the sparsity-inducing norms used in the robust formulations. In this paper, we propose novel robust PCA objective functions with removing optimal mean automatically. We naturally integrate the mean calculation into the dimensionality reduction optimization, such that the optimal mean can be obtained to enhance the dimensionality reduction. Both theoretical analysis and empirical studies demonstrate our new methods can more effectively reduce data dimensionality than previous robust PCA methods.

[pdf] [BibTeX]

authors venues years

Suggest Changes to this paper.

Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).