Search Machine Learning Repository: Active Learning of Parameterized Skills
Authors: Bruno D. Silva, George Konidaris and Andrew Barto
Conference: Proceedings of the 31st International Conference on Machine Learning (ICML-14)
Year: 2014
Pages: 1737-1745
Abstract: We introduce a method for actively learning parameterized skills. Parameterized skills are flexible behaviors that can solve any task drawn from a distribution of parameterized reinforcement learning problems. Approaches to learning such skills have been proposed, but limited attention has been given to identifying which training tasks allow for rapid skill acquisition. We construct a non-parametric Bayesian model of skill performance and derive analytical expressions for a novel acquisition criterion capable of identifying tasks that maximize expected improvement in skill performance. We also introduce a spatiotemporal kernel tailored for non-stationary skill performance models. The proposed method is agnostic to policy and skill representation and scales independently of task dimensionality. We evaluate it on a non-linear simulated catapult control problem over arbitrarily mountainous terrains.
[pdf] [BibTeX]

authors venues years
Suggest Changes to this paper.
Brought to you by the WUSTL Machine Learning Group. We have open faculty positions (tenured and tenure-track).